Rev 0
Prepared for: 09074200 BC Ltd (Developer)
Date:
August $10^{\text {th }}, 2021$
File \#: TE-2017-40

REDWATER INDUSTRIAL PARK AREA STRUCTURE PLAN (ASP)

TECKERA CIVIL ENGINEERING CONSULTANTS \#100, 18130-105 Avenue

Edmonton, Alberta T5S 2T4
Phone: 780-250-0899
Email: info@teckera.ca
www.teckera.ca

Contents

1. PURPOSE 4
2. INTRODUCTION 5
3. STATUTORY COMPLIANCE 8
3.1 MUNICIPAL GOVERNMENT ACT RSA 8
3.2 MUNICIPAL DEVELOPMENT PLAN 8
3.3 TOWN OF REDWATER LAND USE BYLAW N0. 811 11
4. BACKGROUND 12
4.1 LAND USE 12
4.2 TOPOGRAPHY 12
5. STUDIES \& INVESTIGATIONS 15
5.1 ENVIRONMENTAL ASSESSMENT 15
5.2 WETLAND ASSESSMENT 16
5.3 GEOTECHICAL REPORT 17
5.4 HISTORICAL RESOURCES 17
6. DEVELOPMENT CONSTRAINTS 18
6.1 NATURAL FEATURES 18
6.2 MAN MADE FEATURES 20
6.2.1 PIPELINES 20
6.2.2 WELLS \& LEASES 20
6.2.3 ADJACENT LAND USES 21
7. DEVELOPMENT CONCEPT 23
7.1 LAND USE CONCEPT 23
7.2 DESIGN GUIDELINES 27
8. TRANSPORTATION 28
9. UTILITY SERVICING 30
9.1 WATER 30
9.2 SANITARY 30
9.3 UTILITY PHASING 31
9.4 STORMWATER 33
9.4.1 MINOR SYSTEM 33
9.4.2 MAJOR SYSTEM 33
9.4.3 SITE DRAINAGE 33
9.4.4 STORMWATER MANAGEMENT FACILITY (SWMF) 33
10. PHASING 37
10.1 PHASE 1 37
10.2 PHASE 2 37

APPENDIX A1:	ESA LEVEL 1 ADDENDUM LETTER
APPENDIX A2:	ESA LEVEL 1 REPORT
APPENDIX B:	LETTER FROM ARC RESOURCES
APPENDIX C:	GEOTECHNICAL INVESTIGATION
APPENDIX D:	WETLAND ASSESSMENT
APPENDIX E1:	TRAFFIC IMPACT ASSESSMENT
APPENDIX E2:	TRAFFIC IMPACT ASSESSMENT - AMENDMENT REPORT
APPENDIX F:	CERTIFICATE OF TITLE
APPENDIX G:	HRA CLEARANCE LETTER

1. PURPOSE

Redwater is located 10 km's north of Alberta's Industrial Heartland and within Edmonton's regional marketplace, which is comprised of the City of Edmonton, Sturgeon County, Strathcona County, Leduc County, and Parkland County. The Town itself is in the northern portion of Sturgeon County.

Given the proximity to all these areas, Redwater is an ideal location for additional industrial opportunities. This development proposes an industrial area situated off $44^{\text {st }}$ (east) and directly north of the existing industrial development; an area already zoned for this type of development within the Town's Municipal Development Plan.

With the activity surrounding the Town, there is a need for additional industrial lots to support this activity and serve as a base for services to the north.

This Area Structure Plan (ASP) is in support of such development in the Town of Redwater.

2. INTRODUCTION

This area structure plan (ASP) provides a general development framework for approximately 36.0 hectares (90 ac) of land legally described as the SW Quarter Section 29, Township 57, Range 21, West of 4th Meridian, and located northeast of the intersection of 51 Ave E and 44 St .

The proposed development is situated directly north of the Town's industrial park in the south-east sector of the Town. Based on market evaluation, there is a current need for additional lots to support local development and activities within the area.

Figures 1 and 2 highlight the location of the development.

The ASP will provide a planning framework for future redistricting (if required), subdivision, and development.

The area structure plan identifies:

- Current and Future land uses.
- External access points.
- Utility servicing concept.
- A roadway system for the plan area including future connectivity to adjacent lands

To determine project feasibility, several studies, as requested by the Town, were commissioned by the development group to support the subdivision concept. These included:
$>$ Environmental assessment (Basin Environmental)
$>$ Wetland assessment (Blackfly Environmental)
$>$ Geotechnical investigation (ENC Testing)
> Traffic impact assessment (McElhanney and D\&A Paulichuk Consulting Ltd)
All of these studies are contained within the appendices.

3. STATUTORY COMPLIANCE

3.1 MUNICIPAL GOVERNMENT ACT RSA

This ASP has been prepared in accordance with Section 633 of the Municipal Government Act. The Act states that an ASP is developed "for the purpose of providing a framework for subsequent subdivision and development of an area of land, a council may by bylaw adopt an area structure plan.

An area structure plan must describe:
i. the sequence of development proposed for the area,
ii. the land uses proposed for the area, either generally or with respect to specific parts of the area,
iii. the density of population proposed for the area either generally or with respect to specific parts of the area, and
iv. the general location of major transportation routes and public utilities, and
v. may contain any other matters the council considers necessary.

3.2 MUNICIPAL DEVELOPMENT PLAN

The Town of Redwater Municipal Development Plan (MDP), Bylaw No. 754, which was adopted in December 2009, is the overarching planning document that guides future growth and development within the Town of Redwater and informs all subsequent planning documents, including this Area Structure Plan (ASP). This ASP supports the policies and goals described by the MDP relative to neighborhood planning, housing, commercial development, and transportation. Specific policies of the MDP that directly influence this ASP are listed in Table 1 below.

Table 1: Municipal Development Plan Policies

MUNICIPAL DEVELOPMENT PLAN POLICIES				
\#	DESCRIPTION	ADH T	RED	NOTES
		YES	NO	
6.1	INDUSTRIAL AREAS			
6.1.1	It is the policy of this Plan that the areas designated Industrial on the Future Land Use and Transportation Plan shall be developed in industrial uses, and that industrial development shall be directed to those lands designated Industrial.	\checkmark		This concept adheres to the Town's future transportation and overall future development concepts
6.1.2	An "industrial area" encompassing lands east of 44th Street will be reserved for industry. This area has safe and convenient access to major arterial roadways and rail facilities.	\checkmark		Project within allocated industrial lands
6.1.3	The Town will encourage concentrated industrial growth by directing future industrial development to the industrial area in order to minimize conflicts with neighboring land uses, to facilitate the economical provision of municipal services, and to promote an efficient industrial land use pattern.	\checkmark		Project within allocated industrial lands
6.1.4	The Town may encourage the gradual relocation of industrial uses which are not in industrial areas to the industrial area.	\checkmark		Project within allocated industrial lands
6.1.5	The sizing and servicing of industrial sites should reflect the requirements of a wide range of industrial activities such as construction, trucking, manufacturing and wholesaling activities, together with petrochemical-related spin-off activities such as plastics, synthetic fibers, paints, etc.	\checkmark		The project will comprise various lot sizes to accommodate the different requirements for industrial developments
6.1.6	The Town will endeavor to ensure the most cost-effective development of land in the industrial area.	\checkmark		Servicing design is cost effective as it services lots on both sides
6.1.7	Existing and future industrial activities in the industrial area will be protected by preventing encroachment of non-industrial uses.	\checkmark		A MR buffer along east side of $44^{\text {th }}$ Street In addition to the roadway will provide a separation between industrial and 44 ${ }^{\text {th }}$ Street
6.1.8	Future industrial development will demonstrate adequate fire flow capacities prior to development approval and after completion of construction to the satisfaction of the Town's Fire Department.	\checkmark		The looping of the watermain and sizing was determined based upon the Town's current Master Servicing Agreement
6.1.9	Future industrial development within the Industrial Area will be connected to a paved road network in a manner that meets with the satisfaction of the Town's Public Works Department and the Town's engineer.	\checkmark		This development proposes one access off of $44^{\text {th }}$ Street (at $54^{\text {th }}$ Ave) and one at the extension of $47^{\text {th }}$ street with the provision for an internal future arterial road as per Town's transportation planning concepts
6.2	SITE PLANNING			

6.2.1	The visual appearance of industrial buildings, the location of roadways, landscaping and buffering will be considered in order to ensure compatibility with surrounding uses. The Town will include building and landscaping standards in its land use bylaw as a means of encouraging the development of more attractive industrial structures and improving compatibility with surrounding uses.	\checkmark	The development will ensure adherence to the Town's requirements for aesthetics and landscaping
6.2.2	Industrial development which is adjacent to residential areas along 44th Street should have the best possible visual appearance and provide appropriate buffering measures.	\checkmark	A MR buffer along east side of $44^{\text {th }}$ Street In addition to the roadway will provide a separation between industrial and $44^{\text {th }}$ Street
10.1	TRANSPORTATION		
10.1.2	The Town will endeavor to protect from encroachment by other uses sufficient land for future arterial road rights-of-way.	\checkmark	This concept adheres to the Town's future transportation and development concepts
10.1.3	Control of access along sections of 48 Avenue and 44 Street, which comprise part of the Provincial Highway system (Highway \#38), shall meet the requirements of Alberta Transportation.	\checkmark	This concept adheres to the Town's future transportation and development plan. A traffic impact assessment has been prepared and has provided recommendations for any required upgrades to the affected intersections
10.1.4	Direct access to arterial roads from adjacent properties will be limited in order to emphasize the most important function of these roadways, which is to accommodate high volume traffic flows.	\checkmark	This development proposes one access off of $44^{\text {th }}$ Street (at $54^{\text {th }}$ Ave) and one at the extension of $47^{\text {th }}$ street with the provision for an internal future arterial road as per Town's transportation planning concepts
10.2	MUNICIPAL SERVICES		
10.2.1	The Town will require the provision, throughout the Town, of a reliable water supply and distribution system in terms of capacity and supply rate, an environmentally acceptable sanitary sewage collection and treatment system, and an efficient stormwater collection and management system. The provision of these systems will be funded either by senior levels of government or by new development."	\checkmark	The internal water distribution, sanitary sewer collection and stormwater management are consistent with the Town's Master Servicing Plan to provide efficient, reliable servicing
10.2.4	Where appropriate, municipal services in new areas will be integrated with existing facilities.	\checkmark	All services are designed to be connected to existing services from within the Town
10.2.5	The Town will require the preparation of a servicing scheme and a detailed geo-technical study prior to area structure plan or large area subdivision approval.	\checkmark	Servicing concept has been included with this ASP along with a geotechnical investigation report
10.3	PIPELINES		
10.3.1	Any new subdivision near a pipeline right-of-way shall be designed in such a manner that a $15.2 \mathrm{~m}(50 \mathrm{ft}$.) setback from the nearest edge of any pipeline right-of-way to any permanent structure, may be provided on all lots adjacent to the right-of-way.	\checkmark	Easements are proposed to address long term access to the reclaimed wellsite's (2). The existing pipelines are proposed to be removed / abandoned as the development progresses. A commitment letter from the pipeline owner to remove the pipelines is enclosed within the appendices

3.3 TOWN OF REDWATER LAND USE BYLAW N0. 811

This ASP is consistent with the Town of Redwater Land Use Bylaw No. 811 which came into effect on September 17, 2013. The subject lands are designated as Industrial (M2) District in accordance with the by-law.

4. BACKGROUND

4.1 LAND USE

The site is rectangular and is in an area currently zoned Industrial District (M2) according the Redwater Municipal Development Plan and Land Use Bylaw, consistent with the surrounding areas. The site is currently a vacant, uncultivated land with a single-family residence located in the north-west corner of the property. Two reclaimed well sites are contained within the ASP area and a series of ten abandoned and two active pipelines. These are shown within Figure 6.

Adjacent to the property:

- North of the site is similar to the subject property, comprised of vacant uncultivated land and contains a previous "nuisance grounds" in the north east extent.
- East of the site is an existing ARC Resources Redwater Gas Plant.
- South of the site is an established Industrial development, mainly comprised of multi-use services that support the oil and gas industry. It is currently the only industrial area in Redwater.
- West of the site on the west side of $44^{\text {th }}$ Street is a small residential development.
- A site tagged as a previous "nuisance ground" was identified by the Town north-west of the subject property (north of $54^{\text {th }}$ Ave and west of $44^{\text {th }}$ street).

4.2 TOPOGRAPHY

The site is generally undeveloped land with natural drainage to the north-east as it drops off to the Redwater River, approximately 750 meters to the north. The change in elevation from the south-west corner to the north east corner of the lot is 8 meters.

A site inspection conducted on September $14^{\text {th }}, 2017$ verified that the easterly extent of the site is low and was holding water at the time, primarily due to the lack of discharge ditches to convey the water north. The north-east corner is the lowest elevation within the site and the proposed location of the stormwater management facility. This is consistent with the Town's Master Servicing Plan Concepts.

The lands contain clusters of treed areas throughout the site with a perimeter around the existing residence on the west side.

Figure 3 highlights the site features. Figure 4 shows the area topography and features.

5. STUDIES \& INVESTIGATIONS

5.1 ENVIRONMENTAL ASSESSMENT

A Phase I Environmental Assessment by Basin Environmental was commissioned in August 2015 (Appendix A). The objective of the report was to identify areas of potential environmental concern with past and present activities and to determine what other investigation may be required.

The study detected the following key features:

- 2 abandoned well sites
- 9 abandoned oil pipelines

It should be noted that in addition to the features identified in the Phase I Environmental Assessment, the site also contains:

- Operating (active) - Potable water distribution line (to Arc Resources)
- Operating (active) - Natural Gas line (owned by the Town of Redwater)
- Abandoned - Natural Gas Line (owned by Town of Redwater)

For a total of 12 pipelines within the subject area shown within the section 6.2.1 table.
Methane levels were tested in the most westerly well with no anomalies identified. Reclamation certificates were issued for both well sites. As documentation was not provided (by Imperial Oil) associated with the abandonment/reclamation of the wells at the time, the author of the Phase 1 EA report had recommended a Phase II EA be completed. Based on an updated assessment completed in late 2018, an addendum letter (Appendix A) from the stated the following:
"Given the presentation of new information on the 100/05 and 100/06 oil and gas wells, Basin is issuing an addendum to the Phase I ESA completed in September 2015 stating that a Phase II ESA relating to the 100/05 and 100/06 oil and gas wells is not required at this time."

Also, as per a letter from ARC Resources (Appendix B), ARC has committed to working with the Town and the developer to remove all portions of the pipelines that would be affected by the proposed development.

5.2 WETLAND ASSESSMENT

A Wetland Assessment was conducted by Black Fly Environmental, commencing in October 2018. The wetland assessment impact report (WAIR) of the Study Area consisted of the following:

- a review of available historical aerial photographs to determine historical wetland boundaries.
- a summary of the field assessment of the wetlands encountered on site, conducted on October 10, 2018.
- a determination of the value of the wetlands based on the field observations and the results of ABWRET-A received from Alberta Environment \& Parks (AEP) on January 4, 2019 (original ABWRET -F submitted to AEP on November 27, 2018); and,
- description of the avoidance, mitigation, and replacement strategy of the project

The assessment revealed five identified Wetlands varying in size and characteristics. (See Appendix D for full details). The reports identified the potential impacts of any development on the site to the Wetlands. They are as follows:

- Alterations to wetlands resulting in change of wetland type or permanence.
- Loss of habitat for plants and animals.
- Disruption of drainage patterns within the wetland resulting in flooding and an increased potential sediment runoff; and,
- Increased abundance of noxious species in newly disturbed areas.

The report also identified the strategies to avoid or minimize potential impacts as outlined by the Alberta Wetland Mitigation Directive. They are as follows:

1. Avoidance - In this case, wetland avoidance is not practicable as the area is to be developed into an industrial park and the lands are zoned accordingly by the Town of Redwater.
2. Minimization - Disturbance to the wetlands in the long term cannot be avoided; however, the existing wetlands will be incorporated into the stormwater management system, where feasible.
3. Replacement - Minimization of adverse effects to the wetlands is not possible for the proposed development, and a resulting permanent loss of wetland area will occur. In lieu, fee payments will be made to offset the permanent loss of wetland, as required under AEP policy.

The proposed lot configuration has taken into consideration the large wetland that lies along the eastern part of the site and will utilize these lands for the stormwater pond or constructed wetland. This location is consistent with the Town's proposed stormwater facility as per the 2010 Master Servicing Plan.

A Water Act application for Phase 1 of the development was submitted by Blackfly Environmental in January 2019. An approval was granted in December 2019 and the developer has paid the fees associated with the wetland disturbance agreed upon by Alberta Environment and Parks.

A copy of the Wetland Assessment Impact Report is included within Appendix D.

5.3 GEOTECHICAL REPORT

A geotechnical investigation was completed by ENC Testing on January 24-25, 2019. Eleven test holes were advanced, in 1.5 -meter increments, to a maximum depth of 9.1 m within the proposed land area.

A continuous visual description was recorded on site, which included the soil types, depths, moistures, and other pertinent observations. Slightly disturbed samples were removed and collected at intervals of 0.75 meters from the auger for further testing at the laboratory.

Overall, the underlying soils are conducive for construction of underground utilities, roads and buildings. Most of the soils are comprised of stiff to hard clay mixed with sporadic seams of sand and silt. The lower depth clays are high plastic and will require special attention during construction to maintain soil moistures levels within an acceptable range to allow for safe installation of the deep utilities. Stabilization of the sub-grade may be required in some areas.

The water table is considered high in some areas and will need to be evaluated during construction for installation of the deep utilities (i.e. water and sewer lines). De-watering strategies will likely be required for some installations.

The developer is prepared to ensure that all development will follow the recommendations based on the results provided in the report. (See Appendix C for results and recommendations).

5.4 HISTORICAL RESOURCES

A review of the historical resource (HRV) rating for this site obtained from the department of Alberta Culture and Tourism indicated an HRV of 5, category A. This suggests that the site could contain a historical archaeological resource.

A Historical Resources Act clearance was submitted, and an approval granted. A copy of the HRA clearance letter is included in Appendix G.

6. DEVELOPMENT CONSTRAINTS

6.1 NATURAL FEATURES

The site has significant topographical relief, which is conducive to good drainage. Due to the limited discharge features from the site currently, the easterly portion of the site hold large pockets of water as identified within the aerial imagery and as per the wetland assessment (Blackfly Environmental, Appendix D).

The development concept has been designed to avoid the large wetland along the east side in order to minimize the disturbance.

The majority of the east wetland will be utilized to house a stormwater management facility. This facility will be developed as a wet pond, as a constructed wetland or combination thereof, in consultation with Alberta Environment and in adherence to any of their requirements or directives.

REDWATER

6.2 MAN MADE FEATURES

6.2.1 PIPELINES

Twelve separate pipelines were identified within the site area as shown within Figure 6. They are protected via easement caveats on the title. One natural gas pipeline (north side of property) and the water supply line (eastwest near middle of property) are active while the other ten pipelines are abandoned.

The table below details the particulars of each line including contents and pipe size.

PIPELINES							
License \#	Location From	Location To	Length (KM)	Licensee Name	Pipeline Status	Pipeline Substance	Pipeline Size (mm) /Material
9042-1	04-29-057-21 W4M BE	10-29-057-21 W4M BE	0.98	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-9	03-29-057-21 W4M BE	10-29-057-21 W4M $B E$	0.8	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-10	03-29-054-21 W4M BE	10-29-057-21 W4M BE	0.84	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-12	06-29-057-21 W4M BE	10-29-057-21 W4M BE	0.43	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-15	05-29-057-21 W4M BE	10-29-057-21 W4M BE	0.78	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-37	06-29-057-21 W4M BE	10-29-057-21 W4M BE	0.44	ARC Resources Ltd.	Abandonded	Oil Well Effluent	33.1 Fiberglass
9042-43	04-29-057-21 W4M BE	10-29-057-21 W4M BE	0.94	ARC Resources Ltd.	Abandonded	Oil Well Effluent	88.9 Steel
9042-46	03-29-057-21 W4M BE	10-29-057-21 W4M BE	0.91	ARC Resources Ltd.	Abandonded	Oil Well Effluent	83.1 Fiberglass
9042-48	05-29-057-21 W4M BE	10-29-057-21 W4M BE	0.93	ARC Resources Ltd.	Abandonded	Oil Well Effluent	53.1 Fiberglass
3886-3	05-29-057-21 W4M PL	01-30-057-21 W45 RS	2.62	Town of Redwater	Abandoned	Natrual Gas	60.3 Steel
12003-1	08-30-057-21 W4M PL	08-29-057-21 W4M PL	1.53	ARC Resources Ltd.	Operating	Fresh Water	168.3 Steel
17393-2	09-29-057-21 W4M MS	08-30-057-21 W4M RS	1.49	Town of Redwater	Operating	Natrual Gas	60.3 Steel

All the oil pipelines (9) are abandoned and as per the commitment letter from ARC Resources included in Appendix B, the lines can be removed by the operator to accommodate the development. Any pipelines left in place will meet any setback requirements to the development features.

6.2.2 WELLS \& LEASES

There are two abandoned well sites within the subject property, both owned by Imperial Oil. Both have been reclaimed and certificates issued.

The table below details the particulars of each site including any reclamation certificate information:

RECLAIMED WELLSITES						
License Surface Location Label	License Number	Licensee Name	License Status	Primary Status Fluid	Reclaimation \#	
05-29-057-21W4	0000482	Imperial Oil Resources Limited	RecCertified	CRUDE OIL	32468	
$06-29-057-21 W 4$	0001045	Imperial Oil Resources Limited	RecCertified	CRUDE OIL	12586	

These wells, even in a reclaimed state, require long term protection. The development will accommodate for this and provide for the minimum setbacks to allow access to the well head center. As per directive 079 of the Alberta Energy Regulator, the minimum radius around an abandoned well to be free and clear of any structures is 5 meters.

6.2.3 ADJACENT LAND USES

ARC Resources Plan

The ARC Resources gas processing plant lies in the quarter section to the east of this proposed development. This is a Level 1 facility.

According to the Oil and Gas Conservations Regulations, a level 1 facility is a sour gas well with a potential H2S release rate of $0.3 \mathrm{~m}^{3} / \mathrm{s}$ or less, or any other sour gas facility with a potential to release $300 \mathrm{~m}^{3}$ of H 2 S or less. The minimum setback is 0.1 km .

Newalta Redwater Processing Plant

This plant is situated in the north-east extend of the existing industrial subdivision directly south of this proposed development. Based upon a minimum setback distance of 180 meters from the building, it is not anticipated that it will impact the proposed development.

Residential

There is an existing residential development on the west side of $44^{\text {th }}$ Street. Although there are no setback concerns, it is proposed that a buffer (MR) along the west side of this development be maintained to provide a separation between the two land uses along with $44^{\text {th }}$ Street.

Nuisance Grounds

The Town has indicated that there is an existing "Nuisance Grounds" located on the corner (north-west of intersection) of $54^{\text {th }}$ Avenue and $44^{\text {th }}$ Street. In consultation with the registered landowner's engineering consultant, a phase 1 and phase 2 environmental assessment has been prepared. The results indicate that there is no adverse contamination.

The consultant is working with the Town to finalize the documentation to have the caveat removed from the title.
There is no setback requirement for an industrial lot development.

7.DEVELOPMENT CONCEPT

7.1 LAND USE CONCEPT

The subdivision is a proposed industrial development comprised of thirty-four, minimum 0.4 Ha (1 Acre) lots and one to three larger lots.

The development will be fully serviced with municipal water, gravity sewer, power and gas piping.
Access to the site would be from $44^{\text {th }}$ street with the extension of $54^{\text {th }}$ avenue and at the south from the extension of $47^{\text {th }}$ street. Provisions have been made to allow for future connection to the Town's future arterial road proposed through the site.

A stormwater management facility is proposed for the north-east area. This lot would be allocated as a public utility $\operatorname{lot}(\mathrm{PUL})$.

The design concept as shown within Figures 7 and 8 is comprised of:

Phase 1:

- Larger industrial lot/(s), 4.81 Ha
- Extension of $54^{\text {th }}$ Avenue to west internal road intersection
- West internal road to extent of phase 1 development
- Temporary water and sewer servicing

Phase 2:

- Maximum of 34 industrial lot (average of $0.4 \mathrm{Ha}, 1 \mathrm{Ac}$. per lot)
- Extension of $54^{\text {th }}$ Avenue and construction of south-east loop road (arterial road) within the project site
- Construction of remaining internal roads
- Stormwater Management Facility (PUL)

A 12 m road widening and 6 m MR is being provided along the east side of $44^{\text {th }}$ Street. This will ensure a separation between land-uses in addition to the roadway. Should additional MR be required, a walking trail or other amenity could be provided around the stormwater management facility.

The table below indicates the breakout of areas by category:
Table 1 - Land Use Statistics

		Area (ha)
	$\%$ Area	
Total Area (ha)	36.54	100.00%
Total ER (ha)	0.00	0.00%
Gross Developable Area (ha)	36.54	100%
		9.55
Public Utility Lot (storm pond)	26.14%	
UR (Utility Rights of Way)	0.54	1.48%
Road ROW (44th St Road Widening, 54th Ave \& internal roads)	6.38	17.46%
MR	TOTAL Non-Industrial Area	16.26
		0.71%

AREA TABLE			
Parcel \#	Area m ${ }^{2}$	Hectares (ha.)	Acre (ac.)
AREA 1	$48151.74 \mathrm{~m}^{2}$	$4.82 \mathrm{ha}. \square$	11.9 ac .
AREA 2	$21743.11 \mathrm{~m}^{2}$	2.17ha. \square	5.4 ac .
AREA 3	$46573.23 \mathrm{~m}^{2}$	$4.66 \mathrm{ha}. \square$	11.6 ac .
AREA 4	$20253.80 \mathrm{~m}^{2}$	$2.03 \mathrm{ha}. \square$	5.1 ac .
AREA 5	$17237.62 \mathrm{~m}^{2}$	1.72ha. \square	4.3 ac .
AREA 6	$32400.27 \mathrm{~m}^{2}$	3.24ha. \square	8.1 ac .
AREA 7	$11687.72 \mathrm{~m}^{2}$	1.17ha. \square	2.9 ac .
ROAD	$19883.76 \mathrm{~m}^{2}$	1.99ha. \square	5.0ac.
ROAD	$6238.01 \mathrm{~m}^{2}$	$0.62 \mathrm{ha}. \square$	1.6 ac .
ROAD	$2902.01 \mathrm{~m}^{2}$	$0.29 \mathrm{ha}. \square$	0.8 ac .
ROAD	$7496.30 \mathrm{~m}^{2}$	$0.75 \mathrm{ha}. \square$	1.9 ac .
ROAD	$7914.45 \mathrm{~m}^{2}$	$0.79 \mathrm{ha}. \square$	2.0 ac .
ROAD	$14229.26 \mathrm{~m}^{2}$	1.42ha. \square	3.6 ac .
MR	$2648.00 \mathrm{~m}^{2}$	O.26ha. \square	0.7 ac .
PUL	$95514.77 \mathrm{~m}^{2}$	9.55ha. \square	23.7 ac .
RD WIDEN	$5246.26 \mathrm{~m}^{2}$	0.52ha. \square	1.3 ac .
URW 1	$873.23 \mathrm{~m}^{2}$	0.09ha. \square	0.3 ac .
URW 2	$3092.27 \mathrm{~m}^{2}$	0.31ha. \square	0.8 ac .
URW 3	$1377.78 \mathrm{~m}^{2}$	0.14ha. \square	0.4 ac .

7.2 DESIGN GUIDELINES

The Town of Redwater utilizes the City of Edmonton Design and Construction Standards. It is proposed that this development would be designed to meet the minimum these requirements of the design criteria and as outlined in the 2010 Master Services Plan Update Report (2010) and the Interim Servicing Supplement (March 2017), prepared by the Town's Engineers, Associated Engineering. This information, in conjunction with the Town's documentation (MDP, LUB, etc.) and guidelines from Alberta Environment and criteria set out in any applicable regulations and acts, would be used to finalize the design.

8. TRANSPORTATION

The proposed roadways are shown within the design concept, Figure 7. The primary access off of $44^{\text {th }}$ Street would be through the extension of $54^{\text {th }}$ Avenue. There is also connectivity from the south-east corner into the existing industrial development to the south with the extension of $47^{\text {th }}$ street. This street intersects with Highway 644.

The design is looped to allow for larger truck movements and emergency exit. There are plans for a future access to the north quarter section when that parcel is developed.

To match the existing industrial development to the south, the roads are intended to be designed using a rural cross section with ditching; however, the Town has the option to construct the new development to an urban standard with curbs and gutters. This decision can be made at the subdivision development stage.

The proposed cross section is shown below:

As per the Town's 2010 Master Services Update Report and the Interim Servicing Supplement (March 2017), 44 ${ }^{\text {th }}$ Street is ultimately slated to a 4-lane arterial roadway. A provision to accommodate a road widening from the west side of the development has been provided.

Shown within Figure 6.6 of the report Master Services Update Report, the road extending from $48^{\text {th }}$ street (east side of development) is a proposed major collector that would take future traffic from the east and south through this development to the north.

A traffic impact assessment (TIA) was prepared by McElhanney in April of 2019 and updated in September 2020, when a change in the development concept was made. D\&A Paulichuk completed an amendment to the McElhanney TIA in late 2020 to include an assessment of traffic existing along $47^{\text {th }}$ street onto Highway 644.

The findings from the TIA include:

$44^{\text {th }}$ Street \& Hwy 38 / Hwy 644

- This proposed development (at full build-out) represents 8.7% of the total traffic volumes for the intersection
- A Type IIc intersection treatment is currently warranted and has been for several years
- A Type IIc intersection will be sufficient for the next 24 years (i.e. full development realized in 2045)
- The current intersection treatment can provide a level of service category C for the next 24 years
- Partial illumination is warranted in 2025; however, no action if required since full urban street lighting exits on all four legs of the intersection
- Traffic signals at this intersection are not warranted for the next 24 years
- Site distance for design vehicles of semi-trailer combination at the posted speed of 50 kph is sufficient

$\underline{47^{\text {th }} \text { Street \& Hwy } 644}$

- A Type IIa intersection is warranted in 2035, at 50% of the proposed development capacity
- Illumination is not warranted at this intersection for the next 24 years
- Traffic signals at this intersection are not warranted for the next 24 years
- Site distance for design vehicles of semi-trailer combination at the posted speed of 70 kph is sufficient

$44^{\text {th }}$ Street $\& 54^{\text {th }}$ Avenue

- Using Synchro 10 software (based upon HCM 2000 and HCM 2010 methodology), the existing intersection treatment shows that the intersection has sufficient capacity to support traffic movements to a Level of Service of A for the next 24 years, with the proposed development fully utilized in 2045
- Illumination is not warranted at this intersection for the next 24 years
- Traffic signal are not warranted for the next 24 years
- Site distance for design vehicles of semi-trailer combination at the posted speed of 50 kph is sufficient

These reports have been included in Appendix E1 and E2 respectively.

9. UTILITY SERVICING

The Town of Redwater's 2010 Master Services Update Report (Associated Engineering) and the Interim Servicing Supplement (March 2017) was reviewed and provides the basis for the design concepts presented for this development.

9.1 WATER

The proposed watermain network is shown within Figure 9. A series of 250 mm and 300 mm PVC pipes would be designed to service the development. As per Figure 3.5 of the Town's Master Services Report, it suggests that a 300 mm watermain through this site is proposed in the future. PRV's will be added, where necessary, to control line pressures. The location and pertinent details will be subject to the detailed design phase.

The proposed lines would be connected to the existing industrial subdivision to the south for looping purposes and the 300 mm watermain along $44^{\text {th }}$ Street, as shown. This will ensure redundancy in the event of line breakages and improve fire flow capabilities.

Fire hydrants would be placed at maximum 90 meter spacing or as required by Town specifications. The exact sizing of the lines would be determined in consultation with the Town at the development stage once the end users are better known.

9.2 SANITARY

There is an existing sanitary sewer trunk main $(375 \mathrm{~mm} / 450 \mathrm{~mm})$ that runs north-south through the property, near its midpoint. Currently this line conveys sewage from the south industrial development to the existing sewage lagoons, approximately 800 meters to the north. As per the Town's 2017 Interim Servicing Supplement Report (Associated Engineering), the 375 mm diameter pipe can accommodate approximately 70 Ha of land development. Any future development south of $48^{\text {th }}$ Avenue would require this trunk main to be upsized accordingly.

The proposed servicing would comprise of installation of 200 mm sewage mains west and east of the trunk main. The proposed lots in the south-east corner of the development would employ a low-pressure sewer system and discharge south to the existing industrial development's sanitary sewer system. The cost to purchase and maintain the sewage tanks for these lots would be borne by the lot owner. As per the 2010 Master Services Report, the existing system is capable to accommodating increased flow from these lots.

As per the 2010 Master Services Update Report, the Interim Servicing Supplement (March 2017) and our discussion with Town personnel, it is understood that in order to service this full development, either the existing lift station must be replaced and lowered.

Should the existing lift station be replaced at its current location, an intercept line would be constructed from the north-south sewer trunk main west to this lift station. This would terminate the direct discharge into the Town's north lagoon - anaerobic cells.

In agreement with the Town in 2018, the developer intends on servicing the phase I lot/(s) by connecting to existing services along $44^{\text {th }}$ Street. This is detailed further in the phasing section of this report.

The proposed sanitary sewer is illustrated within Figure 9.

9.3 UTILITY PHASING

Except for the watermain extension along $44^{\text {th }}$ Street for Phase 1 and the temporary sanitary sewer servicing as noted above, all of the utility servicing and features would be constructed in Phase II of the development.

9.4 STORMWATER

The development will convey surface runoff via roadway gutters or ditches. A proposed stormwater management facility (SWMF) is proposed for the north-east corner of the site, which would be constructed during phase 2 .

This design concept is in-line with the Town's long-term planning for stormwater management. Figure 5.3 of the report (Master Services Update Report) illustrates their overall future concepts. The proposed pond (referred to as Pond "C" within the report) has a proposed capacity of $64,000 \mathrm{~m}^{3}$, requiring approximately 5.0 Ha (12 Ac .) of land.

9.4.1 MINOR SYSTEM

In general, a minor system is designed for drainage to accommodate the runoff, which would occur in relatively frequent (e.g. 1:5 year) return period rainfall events. More specifically, the minor system is typically applied to the buried drainage network of local and trunk sewers, inlets and street gutters, which have traditionally provided conveyance of storm water runoff from road surface. Ditches for rural roadways can also be considered part of the minor system and/or the major system.

9.4.2 MAJOR SYSTEM

The major system is typically designed to control flooding to accommodate runoff rates and volumes for a 100-year or more return period rainfall event. For instance, when the rate of storm runoff generated by less frequent, more intense, rainfall events may exceed the capacity of the minor system, subsequent ponding may occur in depression areas or follow whatever overflow escape route is available. This network of planned or unplanned ponding areas and overland flow routes is referred to as the "major system".

9.4.3 SITE DRAINAGE

The drainage for this site is designed to be conveyed via a series of gutters and/or ditching to the stormwater pond. The lots would be graded to the roadways. The drainage along the extension of $54^{\text {th }}$ Avenue would be directed easterly to the stormwater management facility.

9.4.4 STORMWATER MANAGEMENT FACILITY (SWMF)

The pond is intended to be designed as a wet pond, constructed wetland or combination thereof. Both options would provide both water quality enhancements and flow control (to pre-development rates). Which type of SWMF is most suited would be determined at detailed design phase and in consultation with the Town.

The SWMF would discharge at a controlled rate to an existing drainage ditch that runs along the east side of the development. This ditch conveys stormwater north and into the Redwater River.

The SWMF is proposed to be constructed as part of the Phase 2 development.

For Phase 1 drainage, it is suggested that the Town provide a caveat on the developer to provide a design, satisfactory to the Town, that would ensure minimal impact of any increased runoff through their own stormwater management controls. A proposed ditch would be constructed easterly from phase 1 to the proposed SWMF, where an existing north-south drainage ditch would convey the runoff to the Redwater River. The proposed runoff ditch would contain a flow control device (ex/ culvert with orifice) to restrict flow to pre-development condition. The developer's representative contacted Alberta Environment and Parks to seek approval for the stormwater system; however, they were advised that a detailed review by AEP would only be done at the design phase.

Figure 10 shows the overall area drainage. Figure 11 illustrates the proposed drainage within the site.

10. PHASING

The proposed phasing of the development is shown within Figure 12.

10.1PHASE 1

Phase 1 is comprised of the proposed $\operatorname{lot} /(\mathrm{s})$ that lies adjacent to $44^{\text {th }}$ street. This is intended to one to three lots.
As per previous agreement with the Town, for the sanitary sewer, this phase would be serviced separately from the remainder of the development. It is proposed that an onsite tank and pump system be constructed. The sewage would be pumped via force main to the Town's existing sanitary sewer system along $54^{\text {th }}$ Avenue. The developer would be responsible for the construction costs for the temporary sewer installation and any future decommissioning including removal, if necessary, of the forcemain and connection to the Town's manhole including any restoration of disturbed areas. The owner of the lot would be responsible for the repair and maintenance of the tank and force main piping up to the discharge location. Depending upon the finalized lot configuration for phase 1 lot owners, there may be an opportunity to connect the sewer to the sewer trunk main to the east at phase 1 ; however, this will need to be evaluated at the development stage.

The magnitude of sewage flows from Phase 1 into the Town's system are considered minimal. At the time of detailed design, the system could be configured to discharge during off peak periods to minimize any impact to the existing lift station flows.

For the water servicing for Phase 1 , the existing 300 mm water main along $44^{\text {th }}$ street would be extended to $54^{\text {th }}$ Avenue and connected to the existing water main to provide looping for system redundancy and improved fire protection. A service would be connected off $44^{\text {th }}$ street (new water main) to service the Phase 1 lots.

For stormwater management, it is suggested that the Town provide a caveat on the developer to provide a design, satisfactory to the Town, that would ensure minimal impact of any increased runoff through their own stormwater management controls. The discharge would be directly easterly via constructed ditching to the proposed SWMF, where an existing drainage ditch would convey the runoff to the Redwater River. In the event that Phase 2 of the development is delayed or cancelled, the maintenance of the ditches to the proposed SWMF would the responsibility of the developer. Alternatively, the developer would seek an agreement for maintenance with the Town as part of the phase 1 .

The SWMF will be constructed as part of phase 2 development. Upon development of subsequent phasing, the servicing for phase 1 would be re-constructed, if needed, to connect to the internal water and sewer lines.

Phase 1 is proposed to be constructed in 2021. The servicing for phase 1 is shown on Figure 12.

10.2 PHASE 2

It is proposed that Phase 2 construction would commence in 2023.

Respectfully Submitted,

TECKERA CONSULTING LTD.

TeckEra Consulting Ltd.
 Permit \#11655
 The Association of Professional Engineers, Geologists \& Geophysicists of Alberta

Date: August 10, 2021

Rev 0

Note

This Area Structure Plan was prepared by TeckEra Consulting for 09074200 BC Ltd (Developer). The material in this report reflects TeckEra Consulting's best judgement in light of the information available at the time of preparation.

TECKERA CIVIL ENGINEERING CONSULTANTS
\#100, 18130-105 Avenue
Edmonton, Alberta T5S 2T4
Phone: 780-250-0899
Email: info@teckera.ca
www.teckera.ca

Appendix A1

ESA Level 1 Addendum Letter (Basin Environmental)

David Boychuk
\#397-22555 Township Road 530
Sherwood Park, AB
T8A 4T7

December 4, 2018

Attention: David Boychuck

Re: SW-29-057-21, W4M - Phase I ESA Addendum

Background

In September 2015, Basin Environmental Ltd. (Basin) conducted a Phase I Environmental Site Assessment (ESA) for David Boychuck (Client) on the quarter section of land located at SW-29-057-21, W4M. in Redwater, AB (subject site).

Basin recommended further work at the subject site given the two historical oil and gas wells present (100/05 and $100 / 06$), and the lack of relevant reclamation certification for each well.

Discussion

In November 2018, Basin received a copy of reclamation certificate No. 125586, dated August 16, 2017, stating that Alberta Energy Regulator (AER) reviewed the information provided for the application and concluded that the 100/06 oil and gas well complies with the conservation and reclamation requires of the Environmental protection and Enhancement Act. As such, no reclamation inquiry was held.

On December 3, 2018, Basin had a telephone conversation with Doug Rowden and Shweta Patel, representatives from Imperial Oil Limited (IOL), and confirmed a section within the AER Reclamation Process and Criteria for Oil and Gas Sites guidelines stating the following: "Even after we (AER) issue a reclamation certificate, a company (the owner of the site) remains responsible for surface issues related to reclamation, such as topography, vegetation, soil texture, and drainage, for 25 years, and remains permanently responsible for contamination and any infrastructure left beneath the surface."

IOL confirmed that they will remain responsible if any subsurface contamination is discovered at the 100/05 well site, for the lifetime of the site.

As such, given the presentation of new information on the 100/05 and 100/06 oil and gas wells, Basin is issuing an addendum to the Phase I ESA completed in September 2015 stating that a Phase II ESA relating to the 100/05 and 100/06 oil and gas wells is not required at this time.

Closure

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

Report prepared by:
Basin Environmental, Ltd.

Wes Walkeden, Dipl. EnvSci.
Project Coordinator
(Author)

Renee Burns, C.E.T. Environmental Project Manager (Reviewer)

References

Alberta Energy Regulator. 2018. Reclamation Process and Criteria for Oil and Gas Sites. Regulation Development, Division, Edmonton, AB. Website: https://www.aer.ca/regulating-development/project-closure/reclamation/oil-and-gas-site-reclamation-requirements/reclamation-process-and-criteria-for-oil-and-gas-sites\#audits

Basin Environmental Ltd. (Basin 2015). September 2015. "Phase I Environmental Site Assessment, Surface Location of SW-29-057-21, W4M. " Basin No. B-0150-15

APPENDIX A

COPY OF AER REGULATIONS

Reclamation Inspections and Audits

Even after we issue a reclamation certificate, a company remains responsible for surface issues related to reclamation, such as topography, vegetation, soil texture, and drainage, for 25 years, and remains permanently responsible for contamination and any infrastructure left beneath the surface.

To ensure that companies meet our reclamation standards and guidelines, we conduct regular inspections and audits of reclaimed sites. We audit reclamation-certified sites every year, either randomly or based on risk. We perform two types of audits: desktop audits and field audits.

If we find a company is providing false or misleading information, or is not meeting reclamation standards, we may take enforcement action to bring the company back into compliance.

Desktop Audit

In a desktop audit, our staff verify documentation provided by the company. We conduct desktop audits to ensure that companies are providing us with correct information. If we identify any risks associated with an application, we will conduct a more comprehensive desktop audit. Based on our findings, we may also conduct a field audit.

Field Audits

Out in the field, our staff will assess whether the company's reclamation work meets our reclamation requirements. We will also inspect the following:

- vegetation quality and quantity
- soil quality and quantity
- site topography and landscape
- evidence of remaining facilities
- visual indicators of contamination
- any other parameters flagged by the desktop audit

We may also inspect the site for contamination below the land surface (subsurface contamination). This work might include collecting soil samples for lab analysis or conducting electromagnetic surveys.

APPENDIX B

RECLAMATION CERTIFICATE

Land Reclamation Division	3 rd Floor, Oxbridge Place	Telephone (403)427-6212
	$9820=106$ Street	Fax (403)422-0080
	Edmonton, Alberta	
	Canada T5K 2J6	

RECLAMATION CERTIFICATE NO. 32486

This reclamation certificate is issued pursuant to section 123 of the Environmental Protection and Enhancement Act, following an inquiry on

(Date)
This certifies that the surface of the land held by Imperial Oil Resources Limited within SW Sec. 29 Wp. 57 Re. 21 W4M
in connection with or incidental to Imp Redwater No. 37 well, as shown outlined in yellow on the attached plan, complies with the conservation and reciamation requirements of Part 5 of the Act.

Issued this

day of

1995

inspector (s)

Operator/Agent:
Owners/Occupants:
Imperial Oil Resources Limited
237 4TH AVE SW
CALGARY AB T2P OH 6

[^0]\qquad YES $\sqrt{\mathrm{HO}}$

IMPERIAL REDWATER № 37 WELL
L.S.D. 5 SEC. 29 TWP. 57 RGE. 21 W. 4 M.

GROUND LEVEL ELEVATION•2045.59'

OPERATOR LIABILITY AFTER RECLAMATION CERTIFICATE

Section 15 subsection (1)(a) and (b), and subsection (2) of the Environmental Protection and Enhancement Act, "Conservation and Reclamation Regulations", outlines the operator liability after a reclamation certificate is issued as follows:
(15)(1) Where a reclamation certificate is issued under the Act to an operator in respect of any activity referred to in section 1(w)(i) to (vi) or (viii) (SEE NOTE 1 BELOW, no environmental protection order regarding conservation and reclamation may be issued under section 127(2) of the Act
(a) more than 5 years after the date of the reclamation certificate, in a case where no approval was required in respect of the activity, or
(b) after the date of the reclamation certificate, in a case where an approval was required in respect of the activity.
(2) Where a reclamation cerificate is issued under the Act in respect of an activity referred to in section 1 (w)(vii) (SEE NOTE 2 BELOW), no environmental protection order regarding conservation and reclamation may be made under section 127(2) of the Act more than 25 years after the date of the reclamation certificate.

NOTE 1: Section (1)(w)(i) to (vi) and (viii) states:
:
"specified land" means land that is being or has been used or held for on in connection with
(i) the construction, operation or reclamation of a well;
(ii) the construction, operation or reclamation of a pipeline or telecommunications line;
(iii) the construction, operation or reclamation of a mine, pit or quarry;
(iv) the construction of public roadways;
(v) the conduct or reclamation of exploration operations;
(vi) the construction, operation or reclamation of landfill;
(viii) the construction, operation or reclamation of a extra-territorial undertaking; :
NOTE 2: Section (1)(w) (vii) states:
:
"specified land" means land that is being or has been used or held for or in connection with
(vii) the construction, operation or reclamation of a plant;

Phase I Environmental Site Assessment			
Documentation	Present $/$	Comments	
- Phase I Assessment Report			
- Aerial Photo Assessment			
- Limited Invasive Assessment			
- Spill Records / Other Historical Information			
- Pipeline Plot			
- Geophysical Assessment			

Phase II Environmental Site Assessment		
Documentation	Present $/$	Comments
- Phase II Site Assessment Report		Commens
- Supplemental Report		
- Groundwater Monitoring Report		
- Vegetation Stress Assessment/ Infrared Survey		
- Other External Assessments		

Remediation		
Documentation	Present \checkmark	Comments
\bullet Remediation Option Report (Technical Review)		
- Consultant's Remediation Report		
- Groundwater Recovery Report (spillsites)		
- Risk Assessments		

Reclamation		
Documentation	Present $/ \overline{l \mid}$	Comments
- Vegetation Monitoring Report		
- Detailed Soil Assessment		
- Landowner Releases (for improvements left in		
\quad place)		
	Seed Tags	

Regulatory		
Documentation	Present $/$	Comments
- AEUB Aporovals		
- AEnv Approvals	.	
- Water Act Annual Report (spill sites)		
- Significant Correspondence		
- Reclamation Certificate		

Background / Miscellany		
Documentation	Present $/$ Comments	
- Lease Plans / Lease Abandonment Form		
\because Significant Field Notes		
. Decision Records		

PLAN SHOWING
FELSITE AND ROADWAY
IMPERIAL REDWATER № 37 WELL
L.S.D. 5 SEC. 29 TWP. 57 RE. 21 W. 4 M.

GROUND LEVEL ELEVATION. $2045 \cdot 59^{\prime}$

RECLAMATION CERTIFICATE NO. 125586

This reclamation certificate is issued pursuant to section 138 of the Environmental Protection and Enhancement Act (the act), following a review of the information provided in the application. No reclamation inquiry has been held.

This certifies that the surface of the land held by Imperial Oil Resources Limited, in connection with or incidental to the activities:

Activity Type	Licence/Segment	LLD	Asset Name
	0001045	SW 6-29-57-21-W4M	ESSO REDWATER EX 6-29-57-21
Access Road		$6-29-57-21-W 4 M$	

as shown outlined in yellow on the attached plans), complies with the conservation and reclamation requirements of Part 6 of the act.

Issued on August 16, 2017

Designated Inspector Under the Act

Operator/Agent:
Imperial Oil Resources Limited
PO Box 2480 Stn M 505 Quarry Park Blvd SE
Calgary

The AER may cancel this reclamation certificate pursuant to section 139 of the act where it is of the opinion that further work may be necessary to conserve and reclaim the above specified land to which this certificate relates.

[^1]
Appendix A2

ESA Level 1 Report (Basin Environmental

David Boychuck

Phase I Environmental Site Assessment

SURFACE LOCATION OF SW-29-057-21 W4M

Reference number: B-0150-15

Prepared by:

Basin Environmental Ltd. 215 Nottingham Road
Sherwood Park, Alberta T5A 5M3 Phone: 780.910.0615

Submitted to:

David Boychuck
\#397-22555 Township Road 530
Sherwood Park, Alberta T8A 4T7
September 24, 2015

EXECUTIVE SUMMARY

In August 2015, David Boychuck (Client) retained Basin Environmental Ltd. (Basin) to conduct a Phase I Environmental Site Assessment (ESA) on a property located within the Town of Redwater, Alberta. The subject site is located within the Alberta Township System (ATS) southwest portion of Section 29, Township 057, Range 21, West of the $4^{\text {th }}$ Meridian (SW-29-057-21, W4M).

The subject site is approximately 38 hectares (94 acres) and is rectangular in shape. The subject site consists of a single-family residence (SFR) in the west central portion, and vacant uncultivated land in the remaining portions.

The objective of a Phase I ESA is to identify areas of potential environmental concerns associated with past and present activities that have taken place on the subject site. The Phase I ESA is also used to determine if additional assessment and/or site remediation measures are required. As part of the Phase I ESA, Basin reviewed available historical and current information pertaining to the subject site, including; aerial photographs, regulatory records, well and pipeline records, and spill and complaints records. Interviews and a site visit were conducted to assess the site for evidence of potential environmental issues.

Basin prepared this report in general accordance with the Canadian Standards Association (CSA) document "Z768-01 Phase I Environmental Site Assessment", dated November 2001.

The subject site has been used solely for residential and agricultural operations since its development in the 1940's.

Based on the results of the Phase I ESA completed by Basin, the following could result in potential subsurface impacts at the Site:

- The former well sites (100/05 and 100/06) located in the west-central and east-central portions, respectively, of the subject site.
Based on the findings above, Basin recommends completing a Phase II ESA at the Site.

Table of Contents

1.0 INTRODUCTION 1
1.1 Site Location and Background 1
1.2 Objective 1
1.3 SCOPE OF WORK 1
2.0 SITE INSPECTION 2
2.1 Site Description 2
2.2 POLYCHLORINATED BIPHENYLS. 2
2.3 ASBESTOS CONTAINING MATERIALS 2
2.4 Lead-Based Paints. 3
2.5 MouLD and water damage 3
2.6 Staining and stressed Vegetation 3
2.7 SURFACE WATER 3
2.8 EROSION 3
2.9 Storage Handling and Recycling 3
2.10 AIR DIsCharges. 3
2.11 Sump/Sewer/Sanitary System 4
2.12 Spill and Stain Areas 4
2.13 Hazardous / Waste Materials 4
2.14 General Housekeeping 4
2.15 Adjacent Property Description 4
3.0 ENVIRONMENTAL FILE REVIEW 5
3.1 AERIAL PHOTOGRAPH REVIEW 5
3.2 LaND Title Review. 6
3.3 Wells, Pipelines, AND reLeases 6
3.4 Storage Tanks 6
3.5 ENVIRonmental Law Centre 7
3.6 Historical Henderson Directories and Fire Insurance Plans 7
3.7 Previous Reports and Environmental Site Assessment Repository results 7
4.0 RECOMMENDATIONS 8
5.0 LIMITATIONS 9
6.0 CLOSURE 10
7.0 REFERENCES 11

Tables and Appendices

TABLE 1 SURROUNDING LAND USE
Table 2 Aerial Photograph Summary

Appendix I Figures
Appendix II Regulatory Searches
APPENDIX III PHOTOGRAPHS

1.0 INTRODUCTION

1.1 SITE LOCATION AND BACKGROUND

In August 2015, David Boychuck (Client) retained Basin Environmental Ltd. (Basin) to conduct a Phase I Environmental Site Assessment (ESA) on a property located within the Town of Redwater, Alberta. The subject site is located within the Alberta Township System (ATS) southwest portion of Section 29, Township 057, Range 21, West of the $4{ }^{\text {th }}$ Meridian (SW-29-057-21, W4M).

1.2 OBJECTIVE

The objective of the Phase I ESA is to identify areas of potential environmental concern associated with past and present activities that have taken place on the site or adjacent properties. The results of the Phase I ESA can also be used to determine whether additional assessment and/or site remediation measures are required.

A Phase I ESA assists in reducing uncertainty about potential environmental liabilities, and can be used as a basis for further investigation of a site. Potential concerns may be related to infrastructure or disposal areas, oil and gas activity, building materials, pesticides, and fertilizers.
Basin prepared this report in general accordance with the Canadian Standards Association (CSA) document "Z768-01 Phase I Environmental Site Assessment" (CSA 2001).

1.3 SCOPE OF WORK

A Phase I ESA involves evaluating and reporting on information collected from public records, interviews and a site inspection. A Phase I ESA does not include any sampling or testing of air, soil, groundwater, surface water or building materials. These activities are carried out in a Phase II ESA, if required.

The scope of work for this ESA included the following tasks:

- Conduct interviews;
- Conduct a site inspection;
- Review of historic land uses using land titles and aerial photographs;
- Review of available records and site data; and
- Compile and develop a written report that documents the findings.

2.0 SITE INSPECTION

On September 8, 2015, Basin conducted a Phase I ESA site inspection of the subject site. The Client indicated that he was the person most knowledgeable of the Site conditions, and is hereafter referred to as the Site Representative.

2.1 SITE DESCRIPTION

The subject site is approximately 38 hectares (94 acres) and is rectangular in shape. The subject site consists of a single-family residence (SFR) in the northwest portion, and vacant uncultivated land in the remaining portions.
A Key Map and Site and Surrounding Land Use Map are included in Appendix I. Photographs of the site are provided in Appendix III.

2.2 POLYCHLORINATED BIPHENYLS

The use of polychlorinated biphenyls (PCBs) as dielectric fluids in electrical equipment such as transformers and hydraulic equipment was common up until about 1980. The Federal PCB Regulations, SOR/2008-273, regulate the manufacture, import, export, sale, use and processing of PCBs.

Given the year of construction of the SFR buildings (mid 1940s), there is a potential that the on-Site electrical equipment (i.e., fluorescent light ballasts) may contain PCBs. No staining or leakage was noted in the vicinity of the on-Site electrical equipment.

No electronic transformers or hydraulic equipment was observed at the subject site and none was reported.

2.3 ASBESTOS CONTAINING MATERIALS

Asbestos-containing materials (ACMs) are commonly found in building construction materials (particularly in buildings constructed prior to 1986). Friable asbestos (friable as defined as a material that can be crumbled, powdered or pulverized by hand pressure) was widely used in spraying fireproofing until 1973, and in decorative or finishing plasters, and thermal systems insulation until the early 1980s. Non-friable or manufactured asbestos products were widely used in building construction including in vinyl floor tiles, sheet flooring, ceiling tiles, pipe gaskets, roofing materials, asbestos cement boards, and numerous other products until the mid-198os. A very limited number of non-friable asbestos products in limited quantities are still in use currently in building construction.

Given the year of construction of the SFR buildings (mid 1940s), there is a potential for friable and non-friable ACMs to be present in the site buildings.

An asbestos survey should be performed in buildings that are known or suspected of containing ACMs. If an asbestos survey confirms the presence of ACMs, a management plan should be developed and implemented.

2.4 LEAD-BASED PAINTS

Although paints containing lead were banned from uses on exterior or interior surfaces of buildings, furniture or household items produced in the 1970s, various commercial paints (e.g. road paint) are still known to contain lead.

Given the year of construction of the SFR buildings (mid 1940s), there is a potential for paints containing lead to be present on-Site, including Site Building interior surfaces. A lead-based paint (LBP) survey was not conducted as part of this Phase I ESA.

2.5 MOULD AND WATER DAMAGE

The presence of mould or other microbiological contamination in buildings has become a concern to building tenants and owners due to potential health effects on occupants and users. Provincial Ministries of Labour have recently issued guidelines on enforced regulations to protect the health of construction workers who are exposed to mould in the course of building renovations. The presence of water leaks or high humidity can cause the growth or amplification of mould within building environments.

A comprehensive inspection for mould, which would require intrusive testing, was not performed as part of this Phase IESA. Visible mould or water damaged areas were not observed at the time of the site inspection. The Site Representative was not aware of the presence of mould in the site buildings.

2.6 STAINING AND STRESSED VEGETATION

No evidence of historical chemical discharges or releases (i.e., staining or stressed vegetation) was observed during the Site visit. The Site Representative reported that no known historical chemical spills have occurred on-site.

2.7 SURFACE WATER

Standing water was observed along the east boundary and in the northeast corner of the subject site. General drainage is directed northeast.

2.8 EROSION

No areas of erosion were noted on the subject site.

2.9 STORAGE HANDLING AND RECYCLING

The majority of the subject site consisted of vacant undeveloped land at the time of the site visit. The refuse produced by the SFR on the subject site is assumed to be collected by the Town of Redwater on a weekly basis.

2.10 AIR DISCHARGES

No sources of air emissions suspected to result in residual contamination to the site were identified at the site during the site visit. In addition, no strong, pungent, or noxious odours were noted.

2.11 SUMP/SEWER/SANITARY SYSTEM

Wastewater discharges occurring at the SFR on-Site are inferred to be contained within a sewage system. No other potential sources of environmental contamination related to wastewater discharges were observed or reported during the site visit.

2.12 SPILL AND STAIN AREAS

There were no stains or spills noted during the site inspection, and none were reported by the Site Representative.

2.13 HAZARDOUS / WASTE MATERIALS

At the time of the site visit, no hazardous or waste materials were observed. There are no pesticides reportedly used on the subject site as well as no spills or releases reported.

The above list does not represent a comprehensive chemical inventory for the site there may be additional chemicals used at the site that were not observed during the course of the Phase I ESA site visit. Basin was not supplied with a formal inventory of chemicals stored at the subject site. Based on the observed storage areas, the stored chemicals noted do not represent a potential environmental concern to the subject site.

2.14 GENERAL HOUSEKEEPING

The subject contained no significant debris or materials. Overall the subject site had good housekeeping.

2.15 ADJACENT PROPERTY DESCRIPTION

The adjacent properties consisted of residential land to the west and light industrial/commercial to the north, east and south.

Table 1 - Surrounding Land Use

Land Use	North Adjacent	South Adjacent	West Adjacent	East Adjacent
Vacant	Light Industrial /commercial Land Use	Residential Land Use	Light Industrial /commercial Land Use	
Description	Vacant uncultivated land	Various Industrial /Commercial Use	4 Street followed by single family residences (SFR) and a Multi-tenant residential (MTR) building	A gravel road followed by vacant uncultivated land.
Evaluation	No obvious potential environmental concerns observed.	No obvious potential environmental concerns observed.	No obvious potential environmental concerns observed.	No obvious potential environmental concerns observed.

3.0 ENVIRONMENTAL FILE REVIEW

3.1 AERIAL PHOTOGRAPH REVIEW

Historical aerial photographs were obtained from Alberta Sustainable Resources Development (ASRD) Aerial Photograph Record System (APRS, 2001) to obtain information regarding the historical land use of the site. Nine (9) aerial photographs were obtained for the time period as noted in Table 2. The summary and description of relevant features or structures visible in the aerial photographs of the site and adjacent properties is presented below in Table 2.

Table 2 - Aerial Photograph Summary

YEAR	DESCRIPTION
1949	The subject site appears to consist of a farming homestead in the northwest portion, a square shaped development, inferred to be an oil and gas lease also located in the northwest portion, and vacant agricultural land in the remaining areas. There appears to be a cleared pathway, inferred to be a pipeline right of way entering the subject site from the northeast corner and exiting in the southwest corner. A second cleared pathway is visible traversing the central portion of the subject site from east to west.
1968	Similar to the 1949 aerial photograph with the exception of a gravel road and development inferred to be an oil and gas lease is visible in the northeast portion of the subject site. The cleared pathway traversing the subject site from east to west is now inferred to be a rail line. The pathway entering the subject site from northeast to southwest is no longer visible.
1976	Similar to the 1968 aerial photograph.
1983	Similar to the 1976 aerial photograph.
1990	Similar to the 1983 aerial photograph.
1996	Similar to the 1990 aerial photograph, with the exception of various stands of vegetation are visible throughout the vacant cultivated portions of the subject site.
2004	Similar to the 1996 aerial photograph, with the exception of both inferred oil and gas leases appear to not be in production. The rail line traversing the subject site from east to west is no longer visible.
2011	Similar to the 2004 aerial photograph. Several gravel roads appear to enter the subject site from the west, east, and south portions.
2015	Similar to the 2011 aerial photograph. Inferred bodies of water

The surrounding area appears to have consisted of residential land use to the southeast and southwest since the late 1940s. Residential development to the west of the subject site appears to occur during the late 1970s. Commercial/light industrial development to the south of the subject site appeared to occur in the early 1980 s.

3.2 LAND TITLE REVIEW

A copy of the current land title was obtained by Basin from the Spin 2 online registry. Based on information listed within the title document, the Site is described as "Meridian 4, Range 21, Township 57, Section 29, and Quarter South West". The land title indicated that "Henry Yarmola of c/o Stack, Smith \& Co." was listed as the registered owner of the Site at the time of this assessment. No liens or other encumbrances indicating potential environmental concern were noted within the current title.

A copy of the current land title is included in Appendix II.

3.3 WELLS, PIPELINES, AND RELEASES

An Alberta Energy Regulator (AER) search was conducted through the Abacus Datagraphics website (www.abacusdatagraphics.com). Their search results indicated there were nine abandoned pipelines present entering the subject site from the northeast. Five of the pipelines exit the southcentral and southeast portion of the subject site, two pipelines travel to the former oil and gas lease in the east-central portion, and two travel to the former oil and gas lease in the west-central portion of the subject site. All nine pipelines are owned by ARC Resources Ltd., abandoned, constructed of steel, and formerly contained oil well effluent. One abandoned, steel natural gas pipeline, owned by the Town of Redwater, transverses the north portion of the subject site, and one operating, steel fresh water pipeline, owned by ARC Resources Ltd., transverses the south portion of the subject site.

One oil and gas well, 100/05-29-057-21 W4M, owned by Imperial Oil Resources Limited, was located in the west-central portion of the subject site. It was drilled in 1950, abandoned in 1996, and reportedly produced crude oil. A second oil and gas well, 100/06-29-057-21 W4M, owned by Imperial Oil Resources Limited, was located in the east-central portion of the subject site. It was drilled in 1949, abandoned in 1994, and reportedly produced crude oil.

Refer to section 3.7 for reclamation information regarding these two well sites.
Search results from the AER are provided in Appendix II.

3.4 STORAGE TANKS

Basin requested a database search from the Petroleum Tank Management Association of Alberta (PTMAA, 2015) for information relating to active and/or abandoned aboveground and underground storage tanks for the subject site.

The search revealed no active or inactive tanks were reported at that site. Results indicated several storage tanks south of the subject site, but due to their distance (approximately 100m), the results were not reviewed.

There are no records available from the PTMAA prior to 1992. The PTMAA databases are incomplete and cannot guarantee that tanks do not or have not existed at the subject site.

Search results from the PTMAA are provided in Appendix II.

3.5 ENVIRONMENTAL LAW CENTRE

Basin requested a search of the Environmental Law Centre (ELC, 2015) for information relating to any environmental or hazardous incidents on the subject site while owned by: Henry Yarmola. The Environmental Enforcement Historical Search indicated that there has been no enforcement actions issued as per the Alberta Environmental Protection and Enhancement Act and its predecessor legislation.

Search results from the ELC are provided in Appendix II.

3.6 HISTORICAL HENDERSON DIRECTORIES AND FIRE INSURANCE PLANS

Searches of the Historical Henderson Directories and Fire Insurance Plans were not conducted as part of this Phase I ESA. It is expected that there is sufficient site listing information gathered from historical land titles, landowner interviews and previous Phase I ESA reports completed for the property.

3.7 PREVIOUS REPORTS AND ENVIRONMENTAL SITE ASSESSMENT REPOSITORY RESULTS

An inspection letter report was provided for Basin's review for the former oil well 100/06-29-057-21 $\mathrm{W}_{4} \mathrm{M}$ (located in the east-central portion of the subject site). The letter report makes note that Imperial Oil tested surficial and subsurface methane levels on July 15, 2015, at the well center and immediate area. Imperial reported that methane levels at well center and the immediate surrounding area were consistent with naturally varying concentrations of methane in the soil of the area. Imperial concluded that no methane anomalies exist at the location of this well site. However, no information indicating a remediation report, or Phase I/ II ESA had been completed during the decommissioning of this well was made available to Basin.

Given the lack of Phase I or II Environmental Site Assessments and remediation reports completed during the abandonment of this well site, it is Basin's opinion that the 100/06 well site has potential to cause subsurface impacts to the subject site.

A reclamation certificate for the former oil well 100/05-29-057-21 W4M (located in the west-central portion of the subject site) was provided for Basin's review by the Client. The reclamation certificate was issued to Imperial Oil Resources Limited within SW 29-57-214 W4M on July 11, 1995. The reclamation certificate indicates that no Phase I or II Environmental Site Assessments were completed, and no remediation reports were completed for the well site.

Given the lack of Phase I or II Environmental Site Assessments and remediation reports completed during the abandonment of this well site, it is Basin's opinion that the 100/05 well site has potential to cause subsurface impacts to the subject site.

The Environmental Site Assessment Repository (ESAR) (http://www.esar.alberta.ca/) database was searched for records pertaining to any environmental assessments completed on or adjacent to the subject site. Their search results indicated that reclamation certificates were available for the subject site, but were not reviewed by Basin, as more relevant documents for the same locations were provided by the Client.

4.0 RECOMMENDATIONS

Based on the results of the Phase I ESA completed by Basin, the following could result in potential subsurface impacts at the Site:

- The former well sites (100/05 and 100/06) located in the west-central and east-central portions, respectively, of the subject site.

Based on the findings above, Basin recommends completing a Phase II ESA at the Site.

5.0 LIMITATIONS

The material contained in this report reflects Basin's best judgment in light of the information available at the time the environmental consulting services and report preparation ("Services") were conducted. Basin may have also relied on information provided by third parties while conducting the Services. The accuracy of this report is affected by the accuracy of this information.

The reported information is believed to provide a reasonable representation of the general environmental conditions in the areas assessed. The data presented was collected at specific locations and the conditions may be different in other locations where specific information was not collected. Findings outlined in this report cannot and should not be extrapolated to areas that were not specifically investigated. In addition, only those parameters specifically addressed in this report have been evaluated.

The assessment, conclusions and recommendations provided in this report are intended for the sole use of the Client for the specific Services referenced herein and for no other purpose whatsoever. Any other reliance on this report by the Client or a third party is not authorized and Basin accepts no responsibility for any such use or reliance.
Services performed by Basin for this Project have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Technical judgment has been applied in developing the conclusions and / or recommendations provided in this report. No other warranty or guarantee, expressed or implied, is made concerning the test results, conclusions, recommendations, or any other portion of this report.

6.0 CLOSURE

This report has been prepared by Basin Environmental Ltd., for the exclusive use of the Client, using generally accepted scientific and technical practices and environmental guidelines, regulations and criteria/standards in effect at the time of report preparation.

The Phase I ESA report prepared by the following individuals:

Wes Walkeden, Dipl. EnvSci., EPt
Environmental Technologist
(Author)

Darcy O'Brien, B. Sc., RPF
Principal, Senior Project Manager (Reviewer)

7.0 REFERENCES

- Abacus Datagraphics Ltd. (Abadata), 2013. Abadata Oilfield Mapping Software. (www.abacusdatagraphics. com/index.asp).
- Alberta Environment (AENV) Environmental Site Assessment Repository (ESAR 2013). (www.esar.alberta.ca/ESARmap.aspx).
- Alberta Environment (AENV), 2013. Groundwater Information Centre (GWIC 2013). (http://www.envinfo.gov.ab.ca/GroundWater/)
- Canadian Standards Association (CSA), 2001. CSA Standard: Z768-01 Phase I Environmental Site Assessment. Toronto, ON.
- Environmental Law Center (ELC), 2013. Environmental Enforcement Historical Search Service. (www.elc.ab.ca/pages/home/default.aspx).
- Government of Alberta, 2010. Spin2 Spatial Information System (Spin2, 2013). (www.alta.registries.gov.ab.ca).
- Alberta Sustainable Resources (ASRD). Aerial Photographic Records System (APRS), 2013. (https://securexnet.env.gov.ab.ca/aprs/index.html).
- Petroleum Tank Management Association of Alberta (PTMAA), 2013. Petroleum Tank Management Association of Alberta. (http://www.ptmaa.ab.ca/).

APPENDIX I

FIGURES

APPENDIX II

REGULATORY SEARCHES


```
S
LINC SHORT LEGAL
0021 720 610 4;21;57;29;SW
TITLE NUMBER
10Q252
LEGAL DESCRIPTION
MERIDIAN 4 RANGE 21 TOWNSHIP 57
SECTION 29
QUARTER SOUTH WEST
CONTAINING 64.7 HECTARES (160 ACRES) MORE OR LESS
EXCEPTING THEREOUT:
(A) 3.88 HECTARES (9.60 ACRES) MORE OR LESS SUBDIVIDED UNDER PLAN 3190HW
(B) ALL THAT PORTION DESCRIBED AS FOLLOWS: COMMENCING AT THE POINT OF INTERSECTION OF THE WEST BOUNDARY OF THE SAID QUARTER SECTION AND THE NORTH LIMIT OF NORTH AVENUE AS SHOWN ON SUBDIVISION PLAN 3190HW; THENCE EASTERLY ALONG THE SAID NORTH LIMIT AND ITS PRODUCTION EASTERLY FOUR HUNDRED AND FORTY (440) FEET; THENCE NORTHERLY AND PARALLEL TO THE SAID WEST BOUNDARY TWO HUNDRED AND EIGHT AND SEVENTY HUNDREDTHS (208.70) FEET; THENCE WESTERLY AND PARALLEL TO THE SAID NORTH LIMIT TO THE SAID WEST BOUNDARY; THENCE SOUTHERLY ALONG THE SAID WEST BOUNDARY TO THE POINT OF COMMENCEMENT, CONTAINING 0.849 HECTARES (2.10 ACRES) MORE OR LESS.
(C) 22.87 HECTARES (56.51 ACRES) MORE OR LESS AS SHOWN ON SUBDIVISION PLAN 8120796
(D) THE MOST EASTERLY TEN (10) METRES IN PERPENDICULAR WIDTH THROUGHOUT, LYING NORTH OF THE NORTH LIMIT OF RIGHT-OF-WAY PLAN 2316KS
EXCEPTING THEREOUT ALL MINES AND MINERALS
```

ESTATE: FEE SIMPLE

MUNICIPALITY: TOWN OF REDWATER

10025 JASPER AVE
EDMONTON
ALBERTA
EXECUTOR FOR MIKE YARMOLA

ENCUMBRANCES, LIENS \& INTERESTS		
REGISTRATION		
NUMBER	DATE (D/M/Y)	PARTICULARS
3004 HL	19/01/1950	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		1200-308-4 AVE SW
		CALGARY
		ALBERTA T2POH7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		142406429)
1173HN	17/02/1950	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		1200-308-4 AVE SW
		CALGARY
		ALBERTA T2POH7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		$142407148)$
2597HR	18/10/1950	CAVEAT
		CAVEATOR - IMPERIAL OIL LIMITED.
3484KF	17/01/1956	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		PO BOX 6776,STATION D
		CALGARY
		ALBERTA T2P2E7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		$072517379)$
		(DATA UPDATED BY: CHANGE OF ADDRESS 152105217)
2981TF	29/08/1972	CAVEAT
		CAVEATOR - IMPERIAL OIL LIMITED.
1126VA	20/08/1974	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		PO BOX 6776,STATION D
		CALGARY
		ALBERTA T2P2E7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		072516592)
		(DATA UPDATED BY: CHANGE OF ADDRESS 152149325)
802065866	25/03/1980	CAVEAT
		(CONTINUED)

```
REGISTRATION
                                    # 10Q252
```

 NUMBER DATE (D/M/Y) PARTICULARS
 CAVEATOR - ARC RESOURCES LTD.
PO BOX 6776,STATION D
CALGARY
ALBERTA T2P2E7
(DATA UPDATED BY: TRANSFER OF CAVEAT 062528194)
(DATA UPDATED BY: CHANGE OF ADDRESS 152145753)

812078423 07/04/1981 CAVEAT

802106564

822036232

042472904

13/05/1980 CAVEAT
CAVEATOR - CAPITAL REGION NORTHEAST WATER SERVICES COMMISSION.
10005 - 102 STREET, FORT SASKATCHEWAN
ALBERTA T8L2C5
"DATA UPDATED BY: TRANSFER OF CAVEAT \#862046493"

RE : DEFERRED RESERVE
CAVEATOR - EDMONTON REGIONAL PLANNING COMMISSION.

18/02/1982 UTILITY RIGHT OF WAY
GRANTEE - THE TOWN OF REDWATER.
AS TO PORTION OR PLAN: 8122954

28/10/2004 UTILITY RIGHT OF WAY
GRANTEE - THE TOWN OF REDWATER.
PO BOX 397
4924-47 STREET
REDWATER
ALBERTA TOA2WO
(DATA UPDATED BY: TRANSFER OF UTILITY RIGHT OF WAY 042500224)

TOTAL INSTRUMENTS: 011

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 9 DAY OF SEPTEMBER, 2015 AT 08:51 A.M.

ORDER NUMBER: 29226995
CUSTOMER FILE NUMBER:

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT (S).

Petroleum Tank Management

 Association of AlbertaSuite 980, 10303 Jasper Avenue
Edmonton, Alberta T5J 3N6
PH: (780)425-8265 or 1-866-222-8265
FAX: (780)425-4722

September 10, 2015
Wes Walkeden
Basin Environmental Ltd
115 Nottingham Road, Sherwood Park, AB
T8A 5M3
Dear Wes Walkeden:
As per your request, the PTMAA has checked the registration of active tank sites and inventory of abandoned tank sites and have included records for the property with the legal land description:

SW 29-057-21-W4
Information is provided is governed by the Freedom of Information and Protection of Privacy Act. Please note that both databases are not complete. The main limitation of these databases is that they only include information reported through registration or a survey of abandoned sites completed in 1992 and should not be considered as a comprehensive inventory of all past or present storage tank sites. The PTMAA cannot guarantee that tanks do not or have not existed at this location. Information in the databases is based on information supplied by the owner and the PTMAA cannot guarantee its accuracy. Information on storage tanks or on past or present contaminant investigations may be filed with the local Fire Department or Alberta Environment.

Yours truly,

Gonnie Gacobsen
 PTMAA

1. Site Name: TARTAN TRANSPORT \& CONST.LTD
2. Reference:

3. Type of Facility: a. Petroleum Sales:
b. Facility Owner Usage: 4 Commercial / Industrial
4. Supplier of petroleum products:
5. Number of Tanks: Underground: $0 \quad$ Aboveground: 0

Under the authority of the Safety Codes Act, this information is being collected by the Petroleum Tank Management Association of Alberta (PTMAA) and will be released to the public upon request in accordance with the Freedom of Information and Protection of Privacy (FOIP) Act. If you have any questions, please contact the PTMAA at the address noted on the form or call (780)425-8265.

1. Tank I.D. Number:1
2. Tank Type:
3. Tank Serial \#:
4. Year \& Month of Removal: 12 / 03

Removal Company: Unknown (AST)
Foreman's Certification \#:
Foreman's Name: Unknown
Reason for Removal: 1 No Longer Required
5. Is the tank a:

Facility Design Engineer's:
Firm:
Professional Registration \#: Installer Company Name:

Foreman's Name:
Foreman's Certification \#:
6. Year and Month of Installation:
7. Condition at Installation:

Year of previous service:
8. Status of Tank:
year \& month of last use:
9. Tank Material:

Other Tank Material:
10. Contents:

Allied Petroleum Products:
11. Tank Capacity:

Other:
12.Tank Construction Specifications:

Other:
13. Cathodic Corrosion Protection:
14. Secondary Containment System:

Other:
16. Spill Containment:
(Underground Tanks)
17. Overfill Prevention:

Other:
Upgrade required:
18. Tank Leak Test:

Date:
Method:
Other Methods:
Result:
19. Underground, horizontal piping:
20.Leak Detection Employed At This Site : Y Other

Other: Visual
Upgrade required: 2 No

(Section C Piping System Information)

1. Piping Material: 1 Bare Steel

Other:
2. Piping Secondary Containment: 3 None

Other:
3. Steel Piping Cathodic Corrosion Protection: 3 None
4. Type of Pumping System:
5. Line Leak Detection Installed: 5 None

Other:
Upgrade required:

(Section D Site Sensitivity)

1. Tanks located within 500 metres of a groundwater well: 2 No
2. Tanks located within 200 metres of a surface water body: 2 No

Type of surface water:
Other:
3.Tanks located within 150 metres of a major underground structure: 2 No

Type of underground structure:
Other:

(Section E Other Information)

1. Site Diagram: 2 No
2. Questionnaire Completed By: David McDonald
3. Signature on the form: 1 Yes

Date: 1996/10/24
Date form sent: 1997/06/17
Date form received: 1996/10/24

(Notepad)

Note:

Oct. 24, 1996 - as per original registration form, tank is temp. out of service.

Nov. 7, 1996 - Registration certificate was issued, not sure when tank was taken out of serv.
Mar 9, 2012 - Per email on file by owner. All tanks have been removed from site.

Site Tank Detail by Site by Site Name

(Section A General Information)

1. Site Name: THORHILD CO-OP-REDWATER

Site Number: 8261
Class: B
Status: Active
2. Reference:

6. Type of Facility:
a. Petroleum Sales: 3 Cardlock or Keylock
b. Facility Owner Usage:
7. Supplier of petroleum products: 3 Federated Co-op
8. Number of Tanks: \quad Underground: $0 \quad$ Aboveground: 6

Under the authority of the Safety Codes Act, this information is being collected by the Petroleum Tank Management Association of Alberta (PTMAA) and will be released to the public upon request in accordance with the Freedom of Information and Protection of Privacy (FOIP) Act. If you have any questions, please contact the PTMAA at the address noted on the form or call (780)425-8265.

Site Name: THORHILD CO-OP-REDWATER

1.

2. Tank Type:2 Aboveground
3. Tank Serial \#: 59N10071
4. Year \& Month of Removal:

Removal Company:
Foreman's Certification \#: Foreman's Name:
Reason for Removal:
5. Is the tank a: 1 New Installation Facility Design Engineer's: Cohos Evamy Firm: Gerald Carson
Professional Registration \#: P10020 Installer Company Name: KW Petro. Serv. Foreman's Name: Brad Nesse!
Foreman's Certification \#: 282
6. Year and Month of Installation: 10/07-1 Known
7. Condition at Installation:1 New

Year of previous service:
8. Status of Tank: 1 Currently in service year \& month of last use:
9. Tank Material: 1 Steel

Other Tank Material:
10. Contents: 2 Diesel

Allied Petroleum Products:
11. Tank Capacity: 4 15,000 litres Other:
12.Tank Construction Specifications: 14 ULC 653 Other:
13. Cathodic Corrosion Protection:
14. Secondary Containment System: 4 Steel

Other:
16. Spill Containment:
(Underground Tanks)

Site Number: 8261

1.	Tank I.D. Number:1	2	3	4
2.	Tank Type: 2 Aboveground	2 Aboveground	2 Aboveground	2 Aboveground
3.	Tank Serial \#: 59N10071	59N10071	59N10064	
4.	Year \& Month of Removal:			
	Removal Company:			
	Foreman's Certification \#:			
	Foreman's Name:			
	Reason for Removal:			
5.	Is the tank a: 1 New Installation	1 New Installation	1 New Installation	1 New Installation
	Facility Design Engineer's: Cohos Evamy	Cohos Evamy	Cohos Evamy	Cohos Evamy
	Firm: Gerald Carson	Gerald Carson	Gerald Carson	Gerald Carson
	Professional Registration \#: P10020	P10020	P10020	P10020
	Installer Company Name: KW Petro. Serv.	KW Petro. Serv.	KW Petro. Serv.	KW Petro. Serv.
	Foreman's Name: Brad Nesse!	Brad Nessel	Brad Nessel	Brad Nessel
	Foreman's Certification \#:282	282	282	282
	Year and Month of Installation: 10/07-1 Known	10/07-1 Known	10/07-1 Known	10/07-1 Known
$\begin{aligned} & 0 . \\ & 7 . \end{aligned}$	Condition at Installation:1 New	1 New	1 New	1 New
	Year of previous service:			
8.	Status of Tank: 1 Currently in service year \& month of last use:	1 Currently in service	1 Currently in service	1 Currently in service
9.	Tank Material: 1 Steel Other Tank Material:	1 Steel	1 Steel	1 Steel
10.	Contents: 2 Diesel	1 Gasoline	2 Diesel	2 Diesel
	Allied Petroleum Products:			
11.	Tank Capacity: 4 15,000 litres	7 35,000 litres	Y	4 15,000 litres
	Other:		50,000 litres	
12.Tank Construction Specifications: 14 ULC 653		14 ULC 653	14 ULC 653	14 ULC 653
12. Other:				
13. Cathodic Corrosion Protection:14. Secondary Containment System: 4 St				
		4 Steel	4 Steel	4 Steel

| 17. $\begin{array}{c}\text { Overfill Prevention: } 4 \text { High Level Detection } \\ \text { Other: } \\ \text { Upgrade required: }\end{array}$ | 4 High Level Detection | 4 High Level Detection | 4 High Level Detection |
| :--- | :--- | :--- | :--- | :--- |
| 18. $\begin{array}{c}\text { Tank Leak Test: } 2 \text { No } \\ \text { Date: } \\ \text { Method: } \\ \text { Other Methods: } \\ \text { Result: }\end{array}$ | 2 No | 2 No | |
| | | | |
| 19. Underground, horizontal piping: 1 Yes | 1 Yes | N Yes | |

20.Leak Detection Employed At This Site : 4 Monitoring of Secondary Containment, 5 Daily Inventory Reconciliation

Other :
Upgrade required:
(Section B Petroleum Tank Information)

1.	Tank I.D. Number:5	6
2.	Tank Type: 2 Aboveground	2 Aboveground
3.	Tank Serial \#: 59N10068	59W10069
4.	Year \& Month of Removal:	
	Removal Company:	
	Foreman's Certification \#:	
	Foreman's Name:	
	Reason for Removal:	
5.	Is the tank a: 1 New Installation	1 New Installation
	Facility Design Engineer's: Cohos Evamy	Cohos Evamy
	Firm: Gerald Carson	Gerald Carson
	Professional Registration \#: P10020	P10020
	Installer Company Name: KW Petro. Serv.	KW Petro. Serv.
	Foreman's Name: Brad Nessel	Brad Nessel
	Foreman's Certification \#: 282	282
	Year and Month of Installation: 10/07-1 Known	10/07-1 Known
7.	Condition at Installation:1 New	1 New
	Year of previous service:	
8.	Status of Tank: 1 Currently in service vear \& month of last use:	1 Currently in service
9.	Tank Material: 1 Steel	1 Steel
	Other Tank Material:	
10.	Contents: 1 Gasoline	2 Diesel
	Allied Petroleum Products:	
11.	Tank Capacity: 7 35,000 litres	Y
	Other:	50,000 litres
12.Tank Construction Specifications: 14 ULC 653		14 ULC 653
Other:		
13. Cathodic Corrosion Protection:		
14.Secondary Containment System: 4 Steel		4 Steel

13. Cathodic Corrosion Protection:
14.Secondary Containment System: 4 Steel

4 Stee

Spill Contain Other: (Underground Tanks)
17.

Overfill Prevention: 4 High Level Detection
4 High Level Detection
Other:
Upgrade required:
18.

Tank Leak Test: 2 No
2 No
Date:
Method: Other Methods:

Result:
19. Underground, horizontal piping: 1 Yes

1 Yes
20.Leak Detection Employed At This Site : 4 Monitoring of Secondary Containment, 5 Daily Inventory Reconciliation Other:
Upgrade required:
(Section C Piping System Information)

1. Piping Material: 4 Flexible Plastic

Other:

2. Piping Secondary Containment: 1 Double Walled Pipe

Other:
3. Steel Piping Cathodic Corrosion Protection:
4. Type of Pumping System: 2 Submersible Turbine (Pressure)
5. Line Leak Detection Installed: 4 Intersititial Monitoring of Double Walled Pipe, Y Other

Other: Sump Sensors
Upgrade required:

(Section D Site Sensitivity)

1. Tanks located within 500 metres of a groundwater well: 2 No
2. Tanks located within 200 metres of a surface water body: 2 No

Type of surface water:
Other:
3.Tanks located within 150 metres of a major underground structure: 2 No

Type of underground structure:
Other:

(Section E Other Information)

1. Site Diagram: 1 Yes
2. Questionnaire Completed By: Murray Bazarkiewicz
3. Signature on the form: 1 Yes

Date: 2010/09/16
Phone: (306) 227-3779

Dana
Date form received: 2010/09/22

(Notepad)

Note:

Sept 22, 2010-Plan Review \# 1237/Permit 0265-10-142 on file.

- Precision Test Results on file.
- VOC on file.

1. Site Diagram: (Please number tanks in accordance with information provided and illustrate in relation to streets and buildings.)

2. Comments:

3. Questionnaire Completed By: Murray BazarKiewicz $\frac{306-227-3779}{\text { (Aus. Phone f) }}$
4. I hereby confirm that the information provided on this questionnaire is complete and accurate to the best of my knowledge.

Under the authority of the Safely Codes Act, this information is being collected by the Petroleum Tank Management Association of Alberta (PTMAA) and will be released to the public upon request in compliance with the Freedom of Information and Protection of Privacy (POIP) Act. If you have any questions, please contact the PTMAA at the address noted on this form or call (780)425-8265.

Mr. Wes Walkeden
Basin Environmental Ltd.
4233112 Avenue
Edmonton, AB T5W 0N1

Dear Mr. Walkeden:

RE: Search Requested - Henry Yarmola

In response to your request of September 9, 2015, we have searched the Environmental Enforcement Historical Search Service database for an exact match with respect to the above request, and can advise that as of today's date, there have been NO enforcement actions issued pursuant to the Alberta "Environmental Protection and Enhancement Act" ("EPEA") and its predecessor legislation, the "Hazardous Chemicals Act", "Agricultural Chemicals Act", "Clean Water Act" and "Clean Air Act" to 1971, and/or pursuant to the "Water Act" from 1999 onwards.

This search is limited to the following enforcement actions under EPEA and its predecessor legislation: Tickets, Prosecutions, Administrative Penalties, Warnings, Enforcement Orders, Enforcement Orders Concerning Waste, Environmental Protection Orders, Emergency Environmental Protection Orders, Emission Control Orders, Chemical Control Orders, Water Quality Control Orders and Stop Orders. This search is limited to the following enforcement actions under the Water Act: Prosecutions, Administrative Penalties, Water Management Orders, Warnings and Enforcement Orders. It does not include Clean Up Orders issued under the Litter Act or Environmental Protection Orders respecting unsightly property issued under EPEA; this information may be available from the local municipality.

Enforcement actions are entered in the database following: (1) the decision date, for prosecutions; (2) the date an administrative penalty was paid or due (30 days after issuance), whichever is sooner; and (3) the date the document was issued for all other enforcement actions.

These search results are based on information provided by Alberta Environment ("AENV"). AENV advises that they try to provide the best information possible. However, AENV advises that it cannot guarantee that the information provided is complete or accurate and that any person relying on these search results does so at their own risk. More information may be gained by referring to original enforcement documents.

Copies of orders are available from the Environmental Law Centre. Any other enforcement information may be available directly from Alberta Environment.

Yours sincerely,

Cindy Dewing
Enforcement Search Service
Encl.

ESAR Map

APPENDIX III
 PHOTOGRAPHS

Picture 1 - View of Single Family Residence in the northwest portion of the subject site.

Picture 2 - View to the north of the subject site.

Picture 3 - View of the east property line of the subject site, facing south.

Picture 4 - View of the south property line of the subject site, facing east.

Picture 5 - View to the west of the subject site.

Picture 6 - View of the buildings at the residence in the northwest portion of the subject site.

Picture 7 - Additional view of the buildings at the residence in the northwest portion of the subject site.

Picture 8 - View of the northwest portion of the subject site.

Picture 9 - View of the southwest portion of the subject site.

Picture 10 - View of the southeast portion of the subject site.

Picture 11 - View of the standing water area in the southeast portion of the subject site.

Picture 12 - View of the standing water along the east property line of the subject site.

Picture 13 - View of the wet area in the northeast portion of the subject site.

Picture 14 - View of the central portion of the subject site.

Picture 15 - Additional view of the central portion of the subject site.

Picture 16 - View of a located buried former well center in the east-central portion of the subject site.

Appendix B

Letter from ARC Resources

```
RG50,MFEQ 1%%
```

July 4, 2016

```
Land
4542400
44% 2 Avom,e 5% 
```



```
7% 359
T01 4035028600
-2, 4035038645
*wwemgesolices.rom
```

1876827 Alberta Inc.
C/O David Boychuk
\#397-2235 TWP 530
Sherwood Park, Alberta
T8A 4 T7

Re: ARC Resources Lid. ("ARC")
Abandoned pipelines in S $1 / 2$ NW 29-57.21-WAM

As per our recent telephone conversations regarding your intentions to apply for a development permit in the $S 1 / 2$ NW 29-57-21-W4M.

ARC is committed to working with landowners on a case by case basis to mitigate any issues related to an abandoned line. We would request that any developments applications and futher approvals be forwarded to our office, so we can determine the proper and reasonable course of action. Depending on the nature of disturbance/crossing/encroachment the lines may be able to stay in place and have no effect on your proposed development.

ARC may also consider partial removal of abandoned pipelines when they have the potential to physically impede a development that has been approved by the local authority (Town of Redwater).

If you should have any questions, please do not hesitate to contact the undersigned.

```
Yours truly,
```

cc: Mark Roblin, ARC Resources Lid.
Pete Dickson, ARC Resources Ltd

Appendix C

Geotechnical Investigation

(ENC Testing)

February 15, 2019
0974200 BC Ltd.
coo Teckera Civil Engineering Consultants Ltd.
\#90, 210 McLeod Avenue
Spruce Grove, Alberta
T7X 2K5
Ph: (780) 948-1444; Cell: (780) 803-0571; Email: glen@Teckera.ca
Attention: Mr. Glen Pitt, P.L.(Eng.) Engineering Manager, Principal

Geotechnical Investigation Report Proposed Redwater Area Structure Plan - Portion of SW 29-57-21-W4 Redwater, Alberta

As requested, ENC Testing Inc. has completed a geotechnical investigation at the above noted site. Please find enclosed our report with respect to the above noted investigation. In brief, this report presents the geotechnical recommendations for design and construction aspects of this project.

We hereby give assurance that this geotechnical investigation enclosed was prepared by or under the direct supervision of this registered Professional, complying with the Alberta Building Code.

We trust this report meets your engineering design requirements. If you should have any questions or comments, please feel free to contact ENC Testing Inc.

Yours truly,

ENC Testing Inc.

Nafisul Islam, M.Eng., P. Eng.

Geotechnical Investigation Report
 Proposed Redwater Area Structure Plan - Portion of SW 29-57-21-W4
 Redwater, Alberta

Prepared For:

0974200 BC Ltd.
c/o Teckera Civil Engineering Consultants Ltd.
\#90, 210 McLeod Avenue
Spruce Grove, Alberta
T7X 2K5

Date of Report:
February 2019

Materials Testing by:
ENC Testing Inc.
Sherwood Park, Alberta

Geotechnical Investigation Report Proposed Redwater Area Structure Plan - Portion of SW 29-57-21-W4
 Redwater, Alberta

TABLE OF CONTENTS

1. INTRODUCTION 4
2. SITE DESCRIPTION 4
3. FIELD INVESTIGATION5
4. LABORATORY TESTING 6
5. SUBSURFACE SOIL CONDITIONS 6
5.1 TOPSOIL 6
5.2 Sand Fill/ Clay Fill 6
5.3 Clay 6
5.4 CLAY SHALE/SANDSTONE BEDROCK 7
6. GROUNDWATER CONDITIONS 8
7. RECOMMENDATIONS 8
7.1 GENERAL CONSTRUCTION 8
7.2 Site Grading 9
7.3 Footings 10
7.4 CAST-IN-Place Piles 11
7.5 SLABS ON Grade 13
7.6 Frost Protection 14
7.7 Trench Excavation and Backfill 14
7.8 Gravel Pavement 16
7.9 Concrete 16
7.10 SEISMIC ANALYSIS 17
8. CLOSURE 17
A P P E N D I X 18

List of Pictures

Picture 1: Facing north from the location of Testhole T9... 5
\qquad

Geotechnical Investigation

Project: Proposed Redwater Area Structure Plan
Location: Portion of SW 29-57-21-W4, Redwater, Alberta
Client: Teckera Civil Engineering Consultants
Attention: Mr. Glen Pitt, P.L.(Eng.), Engineering Manager, Principal

1. INTRODUCTION

As requested, ENC Testing Inc. (ENC) has completed a geotechnical investigation made on the above noted site. In brief, this report presents the geotechnical recommendations for design and construction aspects of this project. The objectives of the investigation were to determine the subsoil conditions to aid in design and construction.

ENC understands that Teckera Civil Engineering Consultants Ltd. (Teckera) is preparing an Area Structure Plan (ASP) for 90 acres of land in the Town of Redwater located within SW 29-$57-21-\mathrm{W} 4 \mathrm{M}$. The land will be developed as a commercial/industrial area with possible usages as RV storage yards, welding shops, and other similar businesses. There is no plan of building residential houses for this development. ENC understands that the commercial buildings will not incorporate a basement. The development will also include installation of underground water line at depths between 3 m and 5 m , and sewer lines at depths between 4 m and 5 m . Gravel surfaced roadways will also be constructed. Teckera Provided a traffic impact assessment (TIA) report, titled 'Redwater Industrial Park 44th Street, Highway 38:10 \& 47th Street, Highway 644:02’, prepared by D\&A Paulichuk Consulting Ltd., dated February 15, 2019.

Written authorization signed by Mr. Glen Pitt, P.L.(Eng.), Engineering Manager, Principal, was received through email on January 9, 2019. Fieldwork was completed on January 24 and 25, 2019. This geotechnical investigation was conducted as outlined in proposal S18-1005 dated January 3, 2019 and is subject to the terms and conditions contained therein.

Previous land utilization, environmental concerns, buried objects unless encountered, or other geotechnical issues not specifically noted are beyond the scope of this report. All recommendations are based on the soils encountered in the testholes. Should different soils be encountered between the testholes, additional recommendations may be provided. The recommendations provided apply only to the outlined structure. Other forms may require alternative recommendations.

2. SITE DESCRIPTION

The proposed 90 acres of land for the development is located on the northeast corner of 44 Street and a railway spur north of 51 Avenue East in the Town of Redwater, Alberta. The land is within SW 29-57-21-W4M. During the fieldwork, the site was covered with snow. There were
\qquad
treed areas on the northwest portion of the site and sporadically treed areas on the other portions of the site. There are some low-lying areas on the east side of the site. Some residential dwelling house structures were located on the west side of the site. A contour drawing provided by Teckera showed that the site generally sloped towards the northeast and an elevation difference of approximately 10.0 m existed from the southwest corner to the northeast corner of the site.

Picture 1: Facing north from the location of Testhole T9
Utilities checked included electric power, telecommunication and gas service lines. Underground utilities found on site were avoided during testhole probing.

3. FIELD INVESTIGATION

The soil investigation was conducted using a tracked rig contracted from Evergreen Drilling Ltd. and equipped with solid stem augers. Eleven testholes were advanced, in 1.5 metre increments, to a maximum depth of 9.1 m within the proposed land area. These are all recorded on the testhole logs and site plan in the Appendix. A continuous visual description was recorded on site, which included the soil types, depths, moistures, and other pertinent observations. Slightly disturbed samples were removed and collected at intervals of 0.75 metres from the auger for further testing at the laboratory. Standard Penetration Tests (SPT's) were conducted at selective depths to determine the
\qquad
soil strength.
Standpipes were installed in all of the testholes. The locations of the testholes were determined by a hand-held GPS with an accuracy of $\pm 3 \mathrm{~m}$. No surveying was conducted to determine the elevation of the testholes, however, based on the location of the testholes and the provided contour drawing, an approximate elevation of the testholes was determined and presented on the testhole logs.

4. LABORATORY TESTING

All samples returned to the laboratory were tested for moisture content. Eight representative samples were further tested to determine the liquid and plastic limits of the Atterberg Limit series, and eight for the concentration of soluble soil sulphates. The results of all laboratory and field testing are provided on the attached testhole logs in the Appendix.

5. SUBSURFACE SOIL CONDITIONS

A detailed description of the soils encountered is found on the attached testhole logs in the Appendix. In general, the subsurface soil profile at this site may be described as surficial topsoil followed by clay underlain by bedrock. Sporadic layers of sand, silt, and clay till was noted within the clay layer. In one of the testholes, Testhole T8, sand fill and clay fill soil was noted.

5.1 Topsoil

Topsoil was encountered at grade in all of the testholes and extended to depths ranging between 0.25 m and 0.45 m . The topsoil was A-horizon organic, clayey or sandy, damp, and black in colour.

At the time of fieldwork, the ground was frozen to depths between 0.15 m and 0.5 m .

5.2 Sand Fill/ Clay Fill

Sand fill was noted in one of the testholes, Testhole T8, below the topsoil at 0.3 m and extended to 0.9 m . The sand fill was clayey, low plastic, damp, and medium brown in colour. One moisture content test on a representative sand fill sample showed 9.7%.

Clay fill was noted in one of the testholes, Testhole T8, below the sand fill at 0.9 m and extended to 1.7 m . The clay fill was sandy, medium plastic, stiff, damp, and medium brown-grey in colour. One moisture content test on a representative clay fill sample showed 21.5% and a pocket penetrometer reading of 100 kPa .

5.3 Clay

Clay was encountered in all of the testholes at depths ranging between 0.3 m and 2.1 m and extended to depths ranging between 2.6 m and 5.3 m . Sporadic layers of sand, silt, and clay till were noted within the clay layer in some of the testholes. The clay was silty to sandy, low to high plastic, stiff to hard, damp to moist, medium brown to medium brown-grey in colour, and contained traces of
oxides. Moisture content tests within the clay varied between 8.7% and 31.5% and averaged 21.5%. The pocket penetrometer readings within the clay varied between 100 kPa and 450 kPa , and averaged 355 kPa , indicating very stiff consistency. Five Standard Penetration Tests (SPTs) within the clay layer showed blow counts between 14 and 39 for 300 mm of penetration, indicating stiff to hard consistency. Four Atterberg Limit tests on representative clay samples, from Testholes T1, T4, T8 at 2.3m and Testhole T6 at 3.0m depths, showed Liquid Limits to vary between 46.5% and 65.9%, Plastic Limits to vary between 16.7% and 22.2%, Plasticity Indices to vary between 29.8% and 46.6%, indicating medium to high plasticity.

Sand layers were noted in Testholes T1, T6, and T9 at $2.7 \mathrm{~m}, 0.3 \mathrm{~m}$, and 0.3 m and extended to $3.5 \mathrm{~m}, 1.8 \mathrm{~m}$, and 0.9 m respectively. The sand was clayey to silty, dry to damp, and reddish-brown to medium brown in colour. Moisture content tests within the sand varied between 9.2% and 20.5% and averaged 14.6%.

A silt layer was encountered in one of the testholes, Testhole T7, at 0.9 m and extended to 2.4 m . The silt was clayey, medium plastic, stiff to very stiff, damp, and medium brown-grey in colour. Two moisture content tests on representative samples from the silt layer showed 19.5% and 17.9% and the pocket penetrometer readings of 200 kPa and 225 kPa . One Atterberg Limit test on a representative silt sample from Testhole T7 at 1.5 m showed a Liquid Limit of 31.9%, Plastic Limit of 19.0%, Plasticity Index of 12.9%, indicating medium plasticity.

A clay till layer was encountered in one of the testholes, Testhole T11, at 0.5 m and extended to 2.1 m . The clay till was sandy, medium plastic, very stiff, damp, medium brown-grey in colour, and contained traces of oxides. Two moisture content tests on representative samples from the clay till layer showed 19.0% and 17.0%, and the pocket penetrometer readings showed 300 kPa and 375 kPa , indicating very stiff consistency.

5.4 Clay Shale/Sandstone Bedrock

Clay shale bedrock was encountered in all of the testholes at depths ranging between 2.6 m and 7.2 m and extended to the termination depths of the testholes, the maximum being 9.1 m . The clay shale bedrock was highly weathered, silty, high plastic, hard, damp, and medium brown to medium grey in colour. Moisture content tests within the clay shale varied between 14.6% and 71.6% and averaged 25.2%. The pocket penetrometer readings within the clay shale varied between 250 kPa and in excess of 450 kPa , and averaged 430 kPa , indicating hard consistency. Four Standard Penetration Tests (SPTs) within the clay shale layer showed blow counts between 39 and 73 for 300 mm of penetration, indicating hard consistency. Two Atterberg Limit tests on representative clay shale samples, from Testhole T2 at 4.1m and Testhole T9 at 4.5m depths, showed Liquid Limits of 68.6% and 60.6%, Plastic Limits of 21.5% and 20.2%, and Plasticity Indices 47.1% and 40.4%, indicating high plasticity.

Sandstone bedrock was encountered in three of the testholes, Testholes T5, T7, and T11, at depths of $4.4 \mathrm{~m}, 5.3$, and 4.9 m and extended to $5.6 \mathrm{~m}, 5.6 \mathrm{~m}$, and 7.2 m respectively. The sandstone bedrock was clayey, low to medium plastic, hard, damp, and medium grey to brown-grey in colour.

Moisture content tests within the sandstone varied between 15.1% and 20.9% and averaged 17.2%. The pocket penetrometer readings within the sandstone varied between 250 kPa and in excess of 450 kPa , and averaged 410 kPa , indicating hard consistency. Two Standard Penetration Tests (SPTs) within the sandstone layer showed blow counts of 66 and 85 for 300 mm of penetration, indicating hard consistency. One Atterberg Limit test on a representative sandstone sample from Testhole T5 at 4.6 m showed Liquid Limit of 43.2%, Plastic Limit of 16.8%, and Plasticity Index of 26.4%, indicating medium plasticity.

6. GROUNDWATER CONDITIONS

Following drilling, groundwater readings and slough conditions were measured and piezometric standpipes were installed in all of the testholes. The water level was measured 6 and 7 days after drilling. Results are tabulated below:

Testhole Number (Probe Depth, m)	Ground Elevation at Testhole (m)	Depth Below Surface at End of Drilling(m)		Below Ground Surface on January 31, 2019 (m)	
	Slough	Groundwater	Depth	Elevation	
T1 (5.8)	622.50	No	Dry	5.09	617.41
T2 (6.1)	618.75	No	Dry	1.00	617.75
T3 (6.9)	618.25	No	Dry	3.50	614.75
T4 (6.1)	618.50	No	Dry	1.50	617.00
T5 (5.8)	621.75	No	Dry	2.57	619.18
T6 (9.1)	623.00	No	Dry	3.52	619.48
T7 (5.8)	625.00	No	Dry	3.64	621.36
T8 (6.1)	624.00	No	Dry	4.44	619.56
T9 (9.1)	626.25	No	Dry	2.77	623.48
T10 (5.8)	619.00	No	Dry	2.75	616.25
T11 (9.1)	621.00	No	Dry	Dry	-
*Testhole elevations were estimated from the provided contour map, therefore, approximate.					

From the above Table, it can be seen that the shallowest groundwater was noted at 1.0 m at this site. In terms of elevation, the approximate shallowest groundwater elevation was at 623.48 m . It should be noted that groundwater level may fluctuate on a seasonal or yearly basis, and after periods of heavy rainfall or extended dry weather. Water levels may vary between the testhole locations.

7. RECOMMENDATIONS

7.1 General Construction

1. There is an elevation difference of approximately 10.0 m across the proposed site, therefore, cut and fill will be required for the site development. The design grade of the proposed development is not known to ENC at this time of report preparation.
2. Fill soil to a depth of 1.7 m was noted in one of the testholes, Testhole T8. Fill soil of unknown depths can be present within the site other than at this testhole location. The
\qquad
history of the fill soil is not known and should be considered as non-engineered fill. The shallowest groundwater was noted at 1.0 m at this site. Excavations deeper than the groundwater depth may accumulate water into the excavation.
3. The foundation system may consist of shallow foundations such as strip and spread footings in the areas of cut. Shallow foundations can also be used in areas with fill height shallower than 1.5 m . Alternatively, cast in place concrete piles can be used. Areas with fill thicknesses greater than 1.5 m should utilize cast in place concrete piles.
4. It is recommended that all surface grading be sloped away from the buildings at a minimum grade of 10% for a distance of 3.0 metres. Where pavements are provided, this may be reduced to 2%. It is imperative that drainage be maintained during construction and over time.
5. It is recommended that all soil materials be tested by ENC Testing Inc. to verify adequate compaction, before additional materials are placed.
6. Allowance for or acceptance of differential movement between different foundation conditions within the structure, between any staging of construction, and between the structure and any slabs on grade must be made. In general, mixing of foundation types within the structure is not recommended.
7. The planting of large trees and landscaping should be designed in such a manner that desiccation or saturation of soil does not occur. Care should also be taken that excess water from sprinklers does not cause the subgrade soils to become saturated and eventually swell.
8. The following values correspond to ultimate limit states (ULS) and serviceability limits states (SLS) as defined in the Canadian Foundation Engineering Manual $4^{\text {th }}$ Edition 2006, section 8.2 and can be used as such. Serviceability limit states are numerically equivalent to the working stress and should include both dead and live loads. The resistance factor (ϕ) from the Canadian Foundation Engineering Manual has been provided. The theoretical ULS value must not be used for purposes other than ULS design with the appropriate resistance and load factors. SLS design must be checked.

7.2 Site Grading

1. All topsoil should be stripped off the entire site and wasted.
2. Following determination of design grades, the site should be graded by cut and fill. Fill soil should be clean of organics and any other deleterious materials and be placed and compacted to 98% of Standard Proctor Density (SPD) over 0 to 2% of Optimum Moisture Content (OMC) in compacted lift thicknesses of 150 mm .
3. Imported fill where needed can consist of medium plastic clay or clay till material and should be placed and compacted to 98% of Standard Proctor Density (SPD) over 0 to 2% of Optimum Moisture Content (OMC) in compacted lift thicknesses of 150 mm .

7.3 Footings

1. The footing parameters can be accurately provided when the location of the buildings are determined. However, footings are feasible for areas where there is cut, i.e., native soil at grade and for areas where the fill depth following site grading is less than 1.5 m . A preliminary range of footing design parameters are provided here based on the strength of the soil samples encountered in the testholes. The bearing values that may be used are as follows:

Table 3: Preliminary Footing Design Parameters			
Soil Stratum			
On native undisturbed clay, clay till, silt, or sand	Bearing Value (kPa)		
Strip footing	Resistance Factor	Factored ULS	
Spread footing	$155-175$	0.5	$235-265$

2. To provide frost cover and moisture protection, the exterior footings should be placed at least 1.5 metres below finished grade within a continuously heated structure. The interior footings within a heated structure should be provided with at least 0.6 m of soil cover. All footings for a non-continuously heated structure should be placed 2.7 metres below the finished grade or frost mitigation measures installed. Differential settlements are anticipated to be less than 25 millimetres.
3. To ensure adequate performance of the foundation system, continuous footings should be designed as a beam with adequate reinforcing and should be integrated with the foundation walls, if applicable. Such design procedures would permit foundation components to withstand a small amount of differential movement induced by any soil volume changes.
4. Should any organic, soft, wet, or weak footing foundation areas, not shown by the testholes, be encountered during construction, ENC Testing Inc. should be contacted so that additional recommendations may be supplied.
5. No loose, disturbed, remoulded, or sloughed material should be allowed to remain in the open footing excavations. Hand cleaning is advised if an acceptable surface cannot be prepared by mechanical equipment. Excavations should be dug with equipment operating remote from the bearing surface. It is recommended that all bearing surfaces be inspected to verify the correct soil type, and to check for local pre-existing disturbances or soft areas.
6. Footing excavations should be protected from drying, rain, snow, freezing, and the ingress of groundwater. If groundwater is noted in the excavation, the undersigned should be contacted to assess the situation. Care should be taken during construction to prevent excessive changes in moisture content of this material. Where practical, weeping tile should be utilized to assist in control of infiltration water. Protection from desiccation is also recommended to minimize volume change. This is accomplished by not using below slab hot air heating and keeping large deep-rooting trees a sufficient distance away from
the building.
7. All interior backfill against foundation walls should be an inorganic material and should be compacted to an equivalent of at least 98% of the corresponding Standard Proctor Density at optimum moisture content. The backfill should be placed in lifts not greater than 150 millimetres after compaction.
8. Surface grading of the fill around the proposed building should be made sloping away from the foundation walls. Exterior fill should be compacted, and be of low permeability materials. Lateral pressures on the foundation should be considered during backfill.
9. During winter construction, it is essential that all interior fill and load bearing materials remain frost-free. Should freezing of the foundation support soils occur, additional movements can be expected. Recommended winter construction practices, with respect to hoarding and heating of the forms and the fresh concrete, must be strictly followed. If doubts remain as to the suitability of the foundation during construction, the owner should consult ENC Testing Inc.
10. The footing excavations should be inspected by ENC Testing Inc. to verify that the undisturbed native soil is exposed at all locations.

7.4 Cast-in-Place Piles

1. A cast in place concrete pile foundation system can be utilized for this building. The structure may be founded on an adequately reinforced grade beam or pile cap supported by bored, cast in place, concrete friction piles.
2. The skin friction values that may be used are as follows:

Soil Stratum	Skin Friction Values (kPa)	
Elevation, metres	Resistance Factor, (ϕ)	Factored ULS
Grade to below 1.5m or fill depth, whichever is greater	0	0
Below 1.5m or fill depth whichever is greater - 614.5	0.4	23
$614.5-610.4$	0.4	35

3. For skin friction piles, the ultimate shaft resistance is mobilized with relatively small pile displacement, less than 10 mm and as such, serviceability limit states (SLS) is not of a concern. No end-bearing resistance should be considered in design of skin friction piles.
4. Considering the effects of frost and seasonal moisture changes, the friction value for the first 1.5 metres of pile should not be considered in design for unheated or isolated piles. This may be reduced to 0.6 metres for interior piles of continuously heated buildings. No frictional values should be considered within the fill depth.
5. Piles installed within the fill soil will be subject to negative skin friction or down-drag. Structural resistance and pile settlement are the two main design considerations for drag loads. Once the location of the structures, fill depth and fill placement records at such locations are known, proper recommendations can be provided for negative skin friction considerations in design. Down-drag can substantially be reduced by placing a double polyethylene wrapped sonotube throughout the fill depth to reduce settlement.
6. The minimum length of pile should consider the frost heave force as described in Section 7.6.
7. Reinforcing should have similar minimum lengths. The minimum pile shaft diameter for all piles should be 400 mm , with minimum pile spacing of 2.5 times the pile diameter on centre for skin friction piles.
8. The mixing of piles, pile types, or footings within one structural element is not recommended as differential movements may occur.
9. The end-bearing values that may be used are as follows:

Soil Stratum	End-Bearing Value (kPa)		
	SLS	Resistance Factor (ϕ)	Factored ULS
Native Clay	$330-415$	0.4	$400-500$
Bedrock (Clay Shale/Sandstone)	$665-830$	0.4	$800-1000$

10. Due to the 10 m difference in existing grade across the site, the depth or elevation of the bell could not be provided. Once the locations of the structures are identified, the recommended depth of bell formation can be provided. Bell diameters should be a minimum to two and a maximum of three times the shaft diameter. The ratio of the depth to bell base and bell diameter should be minimum 2.5. Belled piles subject to uplift should have reinforcement extending to the base of the bell.
11. Pile bells cannot be formed within sloughing layers. To provide adequate support for the roof of a bell where wet sloughing layers are encountered, the minimum distance from the underside of a sloughing layer to the top of the roof of a bell should be 0.6 m . This may require altering the pile type or field alteration of bell elevation to confirm the bells are formed in acceptable bearing strata.
12. All pile holes must be clean and dry during and prior to placement of concrete. The pile concrete should be placed as soon as possible after the pile has been bored to minimize the potential of sloughing or ingressing groundwater.
13. Sloughing soil conditions were not noted; however, casing should be available on site to seal off zones if sloughing soil conditions are encountered during piling. The piling contractor should make its own determination as to the need for casing and ability to provide a clean pile. It is noted that different piling equipment requires different conditions to maintain clean and open pile holes.
14. All pile holes should be carefully inspected to ensure that no water or slough material is present prior to concrete placement. Full time inspection by ENC Testing Inc. is recommended for all piles and is required should the client require ABC Schedules.
15. Provisions should be made for the possible swelling of the subsoil and the effects of frost action by providing a suitable 100 millimetre void form beneath the grade beams.
16. It is recommended that all piles be adequately reinforced. Concrete for all piles should be adequately compacted.

7.5 Slabs on Grade

1. The site development will require grading and therefore there will be fill in some portions of the site and native soil on the remaining areas. Fill soil to a depth of 1.7 m was also encountered at Testhole T8 location. This fill soil is considered to be non-engineered and should be removed if it falls under a building footprint.
2. The floor slabs placed on top of fill areas can be constructed as a structurally supported floor slab or, if it is desired and the owner is willing to accept the risk of potential slab movements, a slab on grade can be constructed ensuring construction supervision and following the recommendations below.
3. The existing fill soil, as noted in Testhole T8, should be excavated and stockpiled for reuse. Grading of the site should be completed as described in Section 7.2. In the cut areas, the top 150 mm should be scarified, moisture conditioned to within $2-4 \%$ above the OMC and compacted to 96% of SPD. In the areas of fill location, for slab on grade, the fill from the design grade to fill depth up to a maximum depth of 1.5 m should be placed $2-4 \%$ above the OMC and compacted to 96% of SPD in compacted lift thicknesses of 150 mm . If the fill depth is less than 1.5 m at any location, the required amount of fill should be placed $2-4 \%$ above the OMC and compacted to 96% of SPD in compacted lift thicknesses of 150 mm .
4. Care should be taken during construction not to excessively dry or wet any of these materials. As moisture change of the supporting soil occurs, change in the volume of supporting materials will occur, with accompanying movement of the slab. It is recommended that the soil be placed at moisture content slightly over optimum moisture to reduce the potential for swelling.
5. A layer of clean granular material, 150 millimetres minimum, should be placed immediately below the slab on grade. This material should be compacted to an equivalent of at least 98% of the corresponding SPD at OMC.
6. A non-deteriorating vapour barrier should be placed beneath the concrete floor to reduce desiccation of the subgrade material. It is assumed that crack control reinforcing and joints will be utilized.
7. It is recommended that provisions for slab movement be designed into the structure. It is recommended that grade-supported floor slabs be structurally separated from other components of the proposed structure. The slabs should contain sufficient reinforcing to control cracking due to vertical movement caused by shrinkage and swelling of the underlying material. Other slab movement provisions may include adjustments for slabsupported equipment and space over partitions.
8. Where separation for the slab and foundation components is not practical, the slab should be reinforced to act as a structural slab, and some provision for volume change be made adjacent to the grade beam.
9. In such areas as furnace rooms, where there is an intense concentrated heat, adequate provisions should be made to protect the supporting subsoil from excessive desiccation. These areas should be well insulated so that soil volume changes beneath the floor slabs may be kept to a tolerable amount. Under slab air heating is not recommended.
10. Any areas with concrete floor slabs that will be exposed to deep frost penetration below the slabs are expected to move; hence, should not be rigidly attached to the structure, and should contain sufficient reinforcing to control crack width and vertical movements across the cracks and joints.

7.6 Frost Protection

1. Buried water lines should have a minimum frost cover of 3.3 m if granular backfill is used. For cohesive backfill, the frost cover should be a minimum of 2.7 m .
2. If less than the required soil cover is used, the pipes should be protected with insulation to avoid frost effects.
3. The design of piles should consider the adfreeze force. An adfreeze force of 65 kPa along the upper 2.7 m of the pile should be considered. The resistance to the adfreeze force will be the dead load acting on the pile, the weight of the pile and the resistance from below the frost zone of the pile.

7.7 Trench Excavation and Backfill

1. The excavation for this project will involve excavations for utility installations and site grading. The subsurface soil conditions encountered in the test holes are considered to be fair for the installation of underground utilities.
2. The shallowest depth of groundwater was 1.0 m and excavations deeper than this depth may accumulate groundwater. Excavation should be dug in short sections and pumps should be used to dewater the excavation, where required.
3. The short term excavation that are deeper than 1.5 m should have the sides shored and braced, or the slopes cut no steeper than $1.0 \mathrm{H}: 1.7 \mathrm{~V}$. Where excavations are open for longer
than one month, or if significant groundwater seepage is encountered, the sideslopes should be cut not steeper than $1.0 \mathrm{H}: 1.0 \mathrm{~V}$. The Occupational Health and Safety Act, General Safety Regulation should be strictly followed, except where superseded by this report. Please note that $\mathrm{OH} \&$ S permits a vertical portion at the bottom of the trench, and this is not recommended in sands and silts.
4. To minimize pipe loading, trench widths should be minimal but compatible with safe construction operations. The trench width must be wide enough to accommodate pipe bedding and compaction equipment.
5. Long open trenches are not recommended as the sidewalls will fail over time. Protection for the workers is recommended for extended time excavations.
6. To overcome utility installation difficulties, it is recommended that a washed or screened rock and geotextile separator be utilized for the pipe bedding in areas of poor pipe bedding conditions. The washed rock and geotextile should surround the entire pipe with the exact dimensions determined in the field during construction. It is recommended that soft uncompactable material be replaced by washed rock to a minimum depth of 150 millimetres below the pipe. Depending upon the conditions of soil at the pipe base, additional rock may be required.
7. Pipe bedding should adhere to the pipe supplier's specifications or in absence of any such specifications, the City of Edmonton specifications can be followed. The backfill material beneath and up to the middle of the pipe should be an approved bedding sand material where conditions allow. This material should be hand placed and hand tamped with care taken to fill the underside of the pipe.
8. Minimum trench compaction recommendations are 98% of the corresponding Standard Proctor Density. A 150 millimetre maximum lift thickness should be used throughout.
9. Bedding first lifts will require lighter and smaller compaction equipment to avoid damage to the pipe installed. Ideally, each lift should be tested, the thickness determined and approval received before additional material is placed.
10. It should be noted that the ultimate performance of the trench backfill is directly related to the consistency and uniformity of the backfill compaction, as well as the underground contractor's construction procedures. In order to achieve this uniformity, the lift thickness and compaction criterion should be strictly enforced, including near the pipe zone. Sand, utilized to protect fragile pipe must also be compacted.
11. Temporary surcharge loads, such as spill piles, should not be allowed to within 2.0 metres of an unsupported excavation face while mobile vehicles should be kept back at least 1.0 metre. All excavations should be checked regularly for signs of sloughing or failures, especially after rainfall periods.

7.8 Gravel Pavement

1. The TIA report estimated traffic for the three phases as follows:

Phase	Year	Land Use	Total Traffic
1	2019	RV Park	480
2	2029	Industrial Park	386
3	2039	Industrial Park	626
Total			1252

The type of the vehicle, such as single unit trucks (SUT) or tractor trailer combinations (TTC), were not mentioned in the TIA report. ENC assumed 95% of SUT and remaining 5% TTC. Based on the traffic volume of only Phase1, ENC has estimated a single axle, dual tire axle producing 8×10^{5} Equivalent Single Axle Loads (EASLs) over a 20 year design life.
2. In the cut areas, the upper 150 mm should be scarified and moisture conditioned to $\pm 2 \%$ of OMC and compacted to 100% of SPD. In the fill areas, the fill should be placed as described in Section 7.2. and the top 150 mm should be moisture conditioned to $\pm 2 \%$ of OMC and compacted to 100% of SPD.
3. Following gravel structure can be provided:

- 610 millimetres of 20 millimetres Crushed Gravel
- with a woven geotextile for separation on sugbgrade

4. All granular layers should be compacted to 100% of SPD at $\pm 2 \%$ of OMC. Gravel surfaces require periodic maintenance. If rutting occurs in the future, the ruts should be filled with 20 mm crushed gravel and recompacted to ensure positive drainage.
5. As the calculated EASL's are high, for the future phases, it will be beneficial to consider asphalt surfaced pavements.

7.9 Concrete

Eight tests on selected soil samples from Testholes T1, T2, T4, T5, T6, T7, T8, and T9 at $2.3 \mathrm{~m}, 3.8 \mathrm{~m}, 2.3 \mathrm{~m}, 4.5 \mathrm{~m}, 3.0 \mathrm{~m}, 1.5 \mathrm{~m}, 2.3 \mathrm{~m}, ~ 4.5 \mathrm{~m}$ respectively indicated a moderate potential for sulphate attack. Therefore, CSA Type MS or HS (formerly known as Type 50 Sulphate Resistant) cement at a maximum water/cementing material ratio of 0.50 should be used for concrete. CSA A23.1-14 Table 2 specifies air entrained concrete with a minimum 56-day compressive strength of 30 MPa for a Class-3 exposure. Concrete should be air entrained where freeze-thaw will occur. If imported fills are used for site grading, potential for sulphate attack of such soils should be tested.

7.10 Seismic Analysis

This investigation explored the soil to a maximum depth of 9.1 m . Seismic site classification requires the strength of 30 m of soil be looked at. Based on the soil strength encountered within the explored depth and reasonably assuming the soil strength to be greater with increasing depth, the seismic site classification for this site is "C" according to the 2014 Alberta Building Code (ABC) Table 4.1.8.4.A.

8. CLOSURE

This geotechnical investigation report was prepared for the exclusive and confidential use of 0974200 BC Ltd., Teckera Civil Engineering Consultants Ltd., and their agents, and applies only to the subject project. The recommendations given are based on the subsurface soil conditions encountered during testhole boring, current construction techniques, and generally accepted engineering practices. Soil conditions are known only at the test boring locations.

Due to the geological randomness of many soil formations, no interpolation of soil conditions between or away from the testholes has been made or implied. No other warranty, expressed or implied, is made. Should other soils be encountered during construction or other information pertinent to the structures become available, the recommendations may be altered or modified in writing by the undersigned.

We trust this information is satisfactory for your current needs. If you should have any further questions, please contact our office.

Respectfully yours,
ENC Testing Inc.
APEGA Permit 7111

Nafisul Islam, M. Eng., P. Eng.

A P P ENDIX

LIST OF CONTENTS

Site Plan - Figure A1

Logs of Testholes T1 - T11

UCS Soil Classification Chart
with Atterberg Test results plotted

MODIFIED (BY PFRA, 1985) UNIFIED CLASSIFICATION SYSTEM FOR SOILS

Appendix D

Wetland Assessment

(Blackfly Environmental)

WEILAND ASSESSMENTIMPACTREPORT SW ¼ 29-57-21W4M

March 2019

Prepared For:

TECKERA
Table of Contents
1.0 INTRODUCTION 2
2.0 SIIE LOCATION 2
3.0 METHODS 4
3.1 Mapping and Historic al Imagery Review 4
3.2 Database Searches 5
3.3 Wetland Field Survey 5
4.0 RESULTS 6
4.1 Historical Aerial Photograph Review 6
4.1 Database Searches 7
4.3 Field Observations of Wetlands 8
Wetland 1 11
Wetland 2 11
Wetland 3 12
Wetland 4 12
Wetland 5 12
5.0 POTENIIALIMPACTS 13
6.0 WETLANDAVOIDANCE AND REPLACEMENT 16
7.0 CLOSURE. 17
8.0 REFERENCES 18
APPENDIX A - HISTORICALAIR PHOTOS 19
APPENDIX B - PHOTO PLATES 26
APPENDIX C - DATABASE SEARCH RESULTS 33
APPENDIX D - ABWRET-A RESULTS (ABWRETTracking Number A181124) 37

1.0 INTRODUCTION

Black Fly Environmental Ltd (Black Fly) was retained by Teckera Engineering Ltd (Teckera) to conduct a wetland assessment in support of a land development project at SW¼29-57-21-W4M (the Study Area) in Redwater, Alberta. The landscomprising the Study Area are planned to be developed into an industrial park.

This wetla nd assessment impact report (WAIR) of the Study Area consists of the following:

- a review of available* historical aenial photographsto detemine historical wetland boundaries;
- a summary of the field assessment of the wetlands encountered on site, conducted on O ctober 10, 2018;
- a determination of the value of the wetlands based on the field observations and the results of ABWRET-A received from Alberta Environment \& Parks (AEP) on J a nuary 4, 2019 (original ABWRET- F submitted to AEP on November 27, 2018); and,
- description of the avoidance, mitigation and replacement strategy of the project
*due to a fire at the Govemment of Alberta Air Photo Library, historic al imagery reviewed were selected based on a vailability rather than on climatic extremes.

2.0 SITE LOCATION

The Study Area is located on private land in the Town of Redwater, approximately 60 km northeast of Edmonton. It is situated in the Dry Mixwood Natural Subregion of the Boreal Forest Natural Region of Alberta (Natural Regions Committee, 2006).

The lands adjacent to the Study Area include residential, commercial, and industrial lands. The Study Area itself is predomina ntly gently rolling pasture with an old residential dwelling and outbuildings a long the west boundary.

The Study Area is situated on a landscape of undulating, high relief landform with a variety of gravelly, very course parent materials with a limiting slope of 4%, and medium textured parent materials with a limiting slope of 3%. Soils a re equally distributed between well drained Orthic Black Chemozems of the Ferintosh soil series that occur on mid-slopes and Eluviated Black Chemozems of the Ponoka soil series occuming on lower slopes. Soils in the Ponoka soil series are characterized by deep A horizons, reaching depths of over 50 cm . Other soils in the area include well drained Orthic Black Chemozems of the Peace Hills soil series found on upper slopes (Govemment of Alberta, 2019b). Figure 1.0 illustrates the project setting and Study Area.

Service Layer Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and
the GIS user community
Coordinate System: NAD 1983 10TM AEP Resource
Projection: Transerse Mercator
Datum: North American 1983
Revison Date: November 27, 2018
Drawn By: Nadine Clifton

Project Setting and Study Area

Project Name: Red Water Wetlands
Legal Land Description: $\mathrm{SW}-29-57-21$ W 4
Figure Number: 1.0

3.0 MEIHODS

3.1 Mapping and Historical Imagery Review

Data collection and assessment methodologies were completed in accordance with applicable directives asper the Alberta Wetland Policy in support of a regulatory submission under the Water Act.

Identification and delineation of wetland within the Study Area, including the review of historical photographsand the field assessment, follow the methodology outlined in the Alberta Wetland Identific ation and Delineation Directive (Govemment of Alberta, 2015b).

Due to a fire at the Alberta Air Photo Distribution office in 2018, a ccess to historic al imagery waslimited at the time of a ssessment. As such, all other availa ble so urc es were used to evaluate wetland boundaries and pemanence.

Imagery sources used the for the historical review include:

- Abadacus Datagraphics (Abadata) photos from 2006-2011;
- Google Earth (imagery source date August 2, 2015); and,
- an aerial photograph from 1980 that was previously acquired from the provincial archives.

Historical photographs used in the assessment of wetland permanence, including delineated wetland boundaries, are included in Appendix A.

Coresponding annual precipitation data for the historic al photographs were derived from the Alberta Agric ulture and Rural Development's Agroclimatic Information Service (ACIS) records (Govemment of Alberta, 2019b) and are detailed in Table 1.0. Annual average precipitation is presented graphically in Figure 2.0.

Table 1.0 Historic al Aerial Photographs and Comesponding Climatic Data

AirPhoto (mm/dd/ yy)	Season (if avaliable)	Photo Source	Precipitation Year (Dry, Wet, Nomal)	Yearly Precipitation (mm)
$04 / 20 / 1980$	Spring	AirPhoto Library	Wet	530
2006	Unknown	Abadata	Wet	585
2007	Unknown	Abadata	Dry	335
2008	Unknown	Abadata	Dry	337
2009	Unknown	Abadata	Dry	285
2010	Unknown	Abadata	Dry	375
2011	Unknown	Abadata	Dry	395
$08 / 02 / 2015$	Summer	Google Earth	Dry	312

Figure 2.0 Historical Precipitation Data (Township 57 Range 21 W4M)

3.2 Database Searches

The following provincial databaseswere queried for records pertinent to the Study Area:

- Alberta Conservation Information Management System (ACIMS) on October 1, 2018 a nd again on J a nuary 6, 2019 (Govemment of Alberta, 2019e);
- Fisheries \& Wild life Ma na gement Information System (FWMIS) on October 1, 2018, and a gain on J a nuary 6, 2019 (Govemment of Alberta , 2019a) a nd
- Estimated Wetland Value by Section layer using ArcGIS Online map viewer (Govemment of Alberta, 2019d) was searched on October 01, 2018, to obtain a preliminary estimate of the area and value of wetlands within the section in which the Study Area is located.

3.3 Wetland Field Survey

Black Fly conducted the field survey on October 10, 2018. Data collection, wetla nd classification, and delineation of wetland boundaries follow the protocolsoutlined in the Alberta Wetland Identific ation and Delineation Directive (Govemment of Alberta, 2015b).

Observations of plant species within the wetland area and soil characteristics within the top 30 cm of the soil profile were recorded. Photographs of the wetlandswere taken,
and UTM locationswere recorded. Representative photographs of the wetlandsare summarized in photo plates in Appendix B.

Wetla nds were classified using the Alberta Wetland Classification System (AWCS) (Govemment of Alberta, 2015a). The AWCS categorizes wetla nds according to their class (bog, fen, marsh, shallow open water, swamp), their vegetative form (ex. graminoid, shrubby, wooded deciduous), theirtype based on salinity (freshwater, slightly brackish, moderately brackish, brackish) and water permanence (temporary, seasonal, semi-permanent, pemanent).

The wetland boundaries were delineated in the field based on hydrologic soil indicators such as mottling and gleying, as well as the composition of vegetation species and communities. A hand-held GPS unit was used to delinate the wetland boundaries. Following the site assessment, the final wetland boundarieswere determined by comparing the field boundaries and preliminary historical boundaries created from the aerial photographs.

Upon completion of the field assessment, a sha pefile of the assessed wetlands and the completed ABWRET-A form was submitted to AEP for the calculation of the a ctual value of the wetlands. The ABWRET-A was submitted on November 27, 2018 and results were obtained on J anuary 04, 2019.

4.0 RESULTS

4.1 Historical Aerial Photograph Review

A summary of the historic al photograph review and field-verified wetlands are presented in Table 2.0. During the historic al photograph review, five wetlandswere identified within the Study Area (IWetlands 1-5, respectively). During the field visit, the presence of these five wetlandswasconfirmed; no new wetlands were identified. Historical photos and delineations are provided in Appendix A (Figures 6.0-11.0).

Table 2.0 Summary of Historic al Aerial Photograph Review

Year of Aerial Photograph	Presence of Wateror Inundation	Comments
1980	Wetland $1 \& 2$	The property has a residence surrounded by trees in the northeast corner. The rest of the property doesn't appear to be treed. Wetla nds 1 and 2 are holding water. The northem and southem portions of Wetla nd 2 do not seem to be connected. Wetlands 4 and 5 are visible but do not appear to be holding water. Wetla nd 3 is not visible. No development visible south of the Study Area.
2006	Wetland 1, 2, $\& 5$	The residence and surround ing trees are still visible. The remainder of the property now appears to be patchy with tree/shrub cover, except in the southwest comer.

		Development is evident in the property south of the Study Area. Wetlands 1 and 5 are holding small a mounts of water. Wetland 2 is separated into north and south areaswhich both have multiple pools of water. Wetlands 1 and 2 are visible, and Wetlands $4 \& 5$ are visible but appearto be connected. Wetland 3 is not visible.
2007	Wetland 2	The residence is still visible, and the trees throughout the property appear to be thicker. The southwest comer of the property still appears to be devoid of trees. There are small pools of water in Wetland 2, which is separated into north and south portions. Wetland 1 is also visible but doesn't appear to be holding water. Wetlands 3, 4 and 5 are not visible.
2008	Wetland 1 \& 2	The residence and trees look the same as 2007. Wetlands 1 and 2 both conta in open water. Wetland 2 is split into north and south portions. Wetland 3 is visible. Wetlands 4 and 5 appearto be connected.
2009	Wetland 1 \& 2	The residence and trees look the same as 2007. Wetlands 1 and 2 both conta in open water. Wetland 2 is split into north and south portions. Wetland 3 is visible. Wetlands 4 and 5 appearto be connected.
2010	Wetland 2	The imagery for 2009 and 2010 appear to be the same with slightly different resolution.
2011	Wetland 2 \& 4	Wetlands 1, 2 and 4 are visible. The center of the image appears very dark, although the shrubs are still visible. It is unclear whether this area has been tilled or is wet.
2015	Wetland 2	The image is in color. Wetland 2 is holding water in approximately 9 different locations. The north a nd south portions of Wetland 2 appearto be connected. Wetlands 1,2 and 4 are visible. Wetlands 3 and 5 are not apparent.

4.2 Database Searches

A query of the ACIMSdata base did not retum any historical occurrences of rare or listed species within Study Area.

A search of the FWM IS databases did not identify any sensitive wild life spec ies or species of concem within a one-kilometer radius, centric to the Study Area.

The preliminary search of estimated wetland value using the Alberta Merged Wetland Inventory (Govemment of Alberta, 2019d) identified 97 hectares of D-value wetland within 29-57-21-W4M. The final wetland values assigned by Alberta Environment and Parks (AEP), received on J a nuary 04, 2019, are as follows:

- C-Values forWetlands 1 and 2,
- D-Values for Wetlands 3 through 5, received by Black Fly on J a nuary 04, 2019 (Appendix D).

All database search records are included in Appendix C. ABWRET-A results retum from AEP (ABWRETTracking NumberA181124) are included in Appendix D.

4.3 Field Observations of Wetlands

Black Fly conducted the field survey on October 10, 2018. A summary of the wetland areas and classific ation is provided in Table 3.0, and the final wetland boundary delineations are illustrated in Figure 3.0.

At the time of the field survey, the ground was covered by approximately $2-3$ " of snow. Assessment of vegetation species coverwas determined based on identifia ble features above the snow cover. No evidence of livestock was observed. Moreover, no indication of human traffic, either on foot or motorized, wa sobserved. Plant species found within the upland areas of the property included yarrow (Achillea millefolium), dandelion (Taraxacum officinale) and grass speciessuch asKentucky blue grass (Poa pratensis) and timothy (Phleum pretense).

Identification and assessment of the vegetation within the wetlandswas influenced by sea sonality of the survey and presence of light snow cover. A combination of soil redox features and vegetation community indic ators were used to establish wetland boundaries. Standing waterwas present only in Wetland 2; however, the deepest zone of the wetland was not accessible during the field assessment due to the presence of thin ice and unknown water depth presenting a safety hazard.

Individual wetland photo plates are presented in Appendix B, and locations of photo points are shown in Figure 4.0.

Curent Wetland Extent

Field Work: October 10, 2018

Project Name: Red Water Wetlands Legal Land Description: SW-29-57-21 W

Figure Number. 3.0
 Coordinate System: NAD 1983 10TM AEP Resource Projection: Transserse Mercator
Datum: North American 1983
Revison Date: November 27, 201
Drawn By: Nadine Clifton

0	20	40	80	120	160

N \wedge

Photo Points
Field Work: October 10,2018

Project Name: Red Water Wetlands
Legal Land Description: SW -29-57-21

Figure Number: 4.0

Prepared For TECKERA

Wetland 1

Wetland 1 is located along the northem boundary on the westem side of the Study Area (Appendix B, Photos 1-6). No water was present within the wetland at the time of assessment; however, it was evident that the wetland holds water at some point throughout the year, based on observed vegetation indicators. Vegetation zonation was not visible snow cover obsc ured the positive identification of shorter-statured vegetation communities.

Dominant species included awned sedge (Carex atherodes) and isolated patches of common cattail (Thypha latifolia) which were observed at the center of the wetland. Patches of willow (Salix sp.) were present within the wetland basin, as well as a round the wetland edges in depressional areas intermixed with aspen cover. Other observed wetland species include slough grass (Beckmannia syzigachne), common planta in (Plantago major), dock species (Rumexspp.), bluejoint (Calamagrostis canadensis) and tufted hair grass (Deschampsia cespitosa).

Canada thistle (Cirsium arvense) wasobserved in trace amounts along the linear disturbance which runseast-west a cross the north border of the Study Area. This noxious weed, as designated by the Alberta Weed Control Act (Government of Alberta, 2010) did not appearto be present in high densities and was not observed elsewhere in the Study Area. Note that the detection of weed species was diffic ult due to survey timing and snow cover.

Soil redoxfeatureswere evident and including mottling and oxidized root channels along the edge of the wetland. The litter layerwasthick and well-developed throughout the wetland area.

Wetland 2

Wetland 2 is located along the eastem side of the Study Area and is the largest and most well-defined wetland in the Study Area (Appendix B, Photos 7-18). Standing water was observed at various locations within the wetland; maximum depth measurements were not recorded due to safety hazardspresented by thin ice. In addition, the ditch along the access road running north-south along the eastem boundary of the Study Area was plugged at the time of assessment. Water levels in the ditch were equal to levels in Wetland 2 in some areas, partic ularly along the southem portion.

A lineardisturbance created a separation in deep water poolsalong the eastem side of the Study Area. Evidence of a beaver ormuskrat traveling between poolswas noted (disturbance can be seen on Figure 3, between photo points 7 and 8). A beaverlodge was observed along the eastem wetla nd boundary of Wetland 2 though it is unclear whether the beavers are still active in this a rea.

The northwestem reaches of Wetland 2 displayed vegetation zonation from wet meadow zone to shallow wetland zone. The northeastem reaches of Wetla nd 2 zonation also included a deep wetland zone, visible in Figure 3.0. Within the shallow wetland zone, pools of frozen water were visible with duck weed (Lemna minor) frozen in the ice. Vegetation in the shallow wetland zone was dominated by a wned sedge (Carex atherodes). Other observed wetland species included small bottle sedge (Carex
utriculata), common cattail, slough grass, a nd small-fruited bulrush (Sc ippus microcarpus). The deep wetland zones of Wetland 2 were inaccessible due to unknown depth of waterand ice coverage, which was deemed a safety concem. The domina nt species within the deep wetland zone wascommon cattail, which grew in thick rings around areas of open water. The largest pools of waterwere observed in the northeast comer and southeast half of Wetland 2.

Wetland 2 is the largest wetland in the Study Area and conta ins patches of shrubby swamp throughout. These patches are mainly located along the periphery of the wetland with few isolated patches within the wetland basin; with the largest patch located at the center of the northem lobe.

Soil redox features were evident and included gleying and oxidized root channels. The depth to seepage was 18cm and water filled the bottom of the soil pit at 28cm.

Wetland 3

Wetland 3 is located in the center of the Study Area (Appendix B, Photos 19-24). It is a small, shallow depression; the observed change in vegetation community was subtle. The deepest portion of the wetland wasa shallow wetland zone and wasdominated by water sedge (Carex aquatilis); however, this zone comprised less than 10% of the total wetland area. The majority of the wetland wasa wet meadow zone dominated by bluejoint, fowl blue grass (Poa palustris) and tufted hairgrass.

No soil redox featureswere observed in the upper 30 cm of the soil pit, but the litter layer was well developed throughout the wetland area.

Wetland 4

Wetland 4 is located a long the westem edge of the Study Area (Appendix B, Photos $25-30$), immedia tely east of $44^{\text {th }}$ street. At the time of assessment, it did not appear to be contiguous with Wetland 5. The domina nt vegetation coverwas water sedge; other observed wetland species include common cattail, small bottle sedge, and sweet coltsfoot (Petasites sagittatus). There was no water observed within the wetland at the time of assessment; however, snow covered approximately 60% of the wetla nd surface.

The A horizon extended beyond 30 cm of the soil pit, and no redox features were observed within this horizon. The litter layerwasthick and well developed throughout the wetland.

Wetland 5

Wetland 5 is located east of Wetland 4 (Appendix B, Photos $31-36$). It is a low-lying area where several ruts and divots were observed, which ran east in a linearfashion. The wetla nd is na rrow, a nd contained small patc hes of common cattail, small bottle sed ge, and willow species. Some upland specieswere scattered throughout the wetland between the low-lying a reas, including aster spec ies a nd Kentucky blue grass.

The A horizon extended below the 30 cm depth of the soil pit, and no redox features were observed within this horizon. The litter layer was patchy, and only appeared thick and well-developed within the patches of cattail and sedges.

Table 3.0 Summary of wetland characteristics observed in the Study Area (SW²/4-29-57-21-W4M).

Wetland ID	Wetland Area (ha)	AWCS	AEP Relative Wetland Value	Defining Species	Comments
Wetland 1	1.63	Marsh-GraminoidSeasonal (M-G-III)	C	Carex atherodes	Trace a mounts of Canada thistle
Wetland 2	8.85	Marsh-Graminoid-Semi-Permanent (M-G-IV)	C	Typha latifolia	Beaver activity, deep wetland zones and large pools of shallow open water
Wetland 3	0.10	Marsh-GraminoidTemporary (M-G-II)	D	Calamagrostis canadensis	Small depressional area, few wetland species
Wetland 4	0.17	Marsh-GraminoidSeasonal (M-G-III)	D	Carex atherodes	Depressional area along the east side of $44^{\text {th }} \mathrm{st}$.
Wetland 5	0.22	Marsh-GraminoidTemporary (M-G-II)	D	Carex atherodes	Small linear wetland composed of multiple small channelsand divots

5.0 POTENTIALIMPACTS

Potential effects to wetland resources include:

- Alterations to wetla nds resulting in change of wetland type orpermanence;
- Loss of habitat for plants and a nimals;
- Disruption of drainage pattems within the wetland resulting in flooding and an increased potential for sediment runoff; and,
- Increased abundance of noxious species in newly disturbed a reas.

The Alberta Wetland Mitigation Directive outlines three main strategies to deal with potential impacts: avoidance, minimization, and replacement.

Avoidance - In this case, wetland avoidance is not practicable as the area is to be developed into an industrial park and the lands are zoned as such by the City of Redwater.

Minimization - Disturbance to the wetlands in the long term cannot be avoided; however, the existing wetlands will be incorporated into the stormwatermanagement system located in Phase 2, as seen in Figure 5.0.

Replacement - Minimization of adverse effects to the wetlands is not possible for the proposed development, and a resulting permanent loss of wetland area will occur. Inlieu fee payments will be made to offset the permanent loss of wetland, as required underAEP policy.

Figure 5.0 Subdivision phasing plan for industrial park in SW ¼ 29-57-21-W4M

TECKERA
Figure 12 Subdivision Phasing Plan
SCALE 1:5000

6.0 WEILAND AVOIDANCE \& REPLACEMENT

Due to the nature of the development, avoidance of wetlands is not practicable. The industrial park requires the removal of the wetla nds to accommodate road construction, paving, building erection, power a nd lighting facilities, etc. The Study Area is la rgely covered with wetlands; however, the parcel is adja cent to urban development within the Town of Redwater which is expected to have continued growth.

To minimize the impacts of development on the existing wetlands, the development plan has adopted a phased approach (Shown in Figure 5.0, above). Developing the property in three phases will allow for most wetla nds to rema in on the landscape until the later phases (phase 2 and phase 3) are required. In the short-term, this will minimize impactsto wetlands and allow for continued wetland function. In the long term, the existing wetlands will be incorporated into the storm water mana gement design and construction.

At this time, only Phase 1 is being developed and therefore subject to permanent disturbance (i.e. removal). As such, an in-lieu payment is required of offset the permanent loss of wetlands within the

Phase 1 boundary, which will include Wetlands 4 \&5, shown in Table 4.0 below.
Table 4.0 Wetland Areas and Compensation Ratios; Phased Approach

Wetland ID	Total Wetland Area (ha)	Compensation Ratio	Total Replacement (ha)
1	1.63	2	3.26
2	8.85	2	17.7
3	0.1	1	0.1
4	$\mathbf{0 . 1 7}$	$\mathbf{1}$	$\mathbf{0 . 1 7}$
5	$\mathbf{0 . 2 0}$	$\mathbf{1}$	$\mathbf{0 . 2 2}$
		$\mathbf{0}$	

The total wetland a rea impacted by Phase 1 is 0.37 ha in rela tive wetland assessment value unit 2 , valuated at $\$ 19,400 /$ ha. The total a mount of in-lieu payment fees is

\$7,178.00.

7.0 CLOSURE

We thank you for the opportunity to be of assistance. Should you have a ny questions, please contact either of the undersigned at 780.977.0646 for J jennifer Gosse, and 780.725.2227 for Na dine Clifton.

Thank you
Black Fly Environmental Ltd.

Prepared by:

Jennifer Gosse, P.Ag., P. Biol.
Environmental Spec ia list

Reviewed by:

Nadine Clifton, P.Ag., P.Biol
Environmental Scientist

8.0 REFERENCES

Natural Regions Committee (2006). Natural Regions a nd Subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece. Govemment of Alberta. Pub. No. T/852.

Govemment of Alberta. (2010). Weed Control Act. Weed Control Regulation. Alberta Regulation 19/2010

Govemment of Alberta. (2015a). Alberta Wetla nd Classific ation System. Edmonton, Alberta, Canada.

Govemment of Alberta. (2015b). Alberta Wetla nd Identific ation and Delineation Direc tive. Edmonton, Alberta, Ca nada.

Govemment of Alberta . (2019a). Alberta Environment and Parks; FWMIS. Retrieved from Alberta Conservation Information Management System:
http://aep.alberta.ca/fish-wildlife/fwmis/access-fwmis-data.aspx
Govemment of Alberta. (2019b). Alberta Agriculture a nd Forestry; AGRISID. Retrieved from Agric ultural

Regions of Alberta Soil Inventory Database:
http://www1.a gric.gov.ab.ca/\$Department/deptdocs.nsf/All/sag14652
Govemment of Alberta. (2019c). Alberta Agric ulture and Forestry. Retrieved from Alberta Climate Information Service: https://agric ulture.alberta.ca/acis/

Govemment of Alberta. (2019d). Alberta Environment and Parks. Retrieved from Biophysical - Alberta

Merged Wetla nd Inventory: http://aep.alberta.ca/forms-maps-services/maps/resource-data-product-catalogue/biophysical.aspx

Govemment of Alberta . (2019e). Alberta Parks;ACIMS. Retrieved from Alberta Conservation Information Ma na gement System: https://www.alberta parks.ca/a lbertaparksca/management-land-use/a lberta-conservation-information-ma na gement-system-acims/

APPENDIX A - HISTORICALAIR PHOTOS

Historical Wetland Extent

Project Name: Red Water Wetlands Project Na me: Red Water Wetlands
Legal Land Desc intion: SW-29-5--21 W4

Figure Number. 6.0
memeater TECKERA

Historical Wetland Extent
2008

Project Name: Red Water Wetlands Legal Land Description: SW-29-57-21 W4

Figure Number: 7.0

Historic al Wettand Extent
2009

Project Name: Red Water Wetlands Legail Land Descripition: SW-29-57-21 W4

Figure Number: 8.0

> Prepared By:
> BLAC PLII TECKERA

Historical Wetand Extent
2010

Project Name: Red Water Wetlands Legal Land Desc ription: SW-29-57-21 W4

Figure Number: 9.0

Prepared By:
 Prepared By:

 Prepared For:
 BLAOK FLV
 ENVIRONMENTAL TECKERA

Historical Wetland Extent
2011

Project Name: Red Water Wetlands Legal Project Name: Red Water Wettands Leg
Land Description: $5 W-29-57-21$ W4

Figure Number: 10.0

Historical Wetland Extent
2015
Project Name: Red Water Wetlands
Legal Land Descripioio: SW-29-57-2 W4 W

APPENDIX B - PHOTO PLATES

Photo 1: Wetland 1 at Photo Point 1; looking North

Photo 2: Wetland 1 at Photo Point 1; looking East

Photo 3: Wetland 1 at Photo Point 1; looking South

Photo 5: Wetland 1 at Photo Point 1; looking Down

Photo 4: Wetland 1 at Photo Point 1; looking West

Photo 6: Soil pit in Wetland 1 at Photo Point 1

Photo 7: Wetland 2 at Photo Point 2; looking North

Photo 9: Wetland 2 at Photo Point 2; looking South

Photo 11: Wetla nd 2 at Photo Point 2; looking Down

Photo 8: Wetland 2 at Photo Point 2; looking East

Photo 10: Wetland 2 at Photo Point 2; looking West

Photo 12: Wetland 2 at Photo Point 2; showing frozen water at surface

Photo 13: Wetland 2 at Photo Point 6 looking North

Photo 15: Wetland 2 at Photo Point 6 looking South

Photo 17: Wetland 2 at Photo Point 7 looking Northeast

Photo 14: Wetland 2 at Photo Point 6 looking East

Photo 16: Wetland 2 at Photo Point 6 looking West

Photo 18: Wetland 2 at Photo Point 8 looking South

Photo 19: Wetland 3 at Photo Point 3; looking North

Photo 20: Wetland 3 at Photo Point 3; looking East

Photo 22: Wetla nd 3 at Photo Point 3; looking West

Photo 24: Soil pit in Wetland 3 at Photo Point 3

Photo 25: Wetland 4 at Photo Point 4; looking North

Photo 26: Wetland 4 at Photo Point 4; looking East

Photo 27: Wetland 4 at Photo Point 4; looking South

Photo 29: Wetland 4 at Photo Point 4; looking Down

Photo 28: Wetland 4 at Photo Point 4; looking West towards 44st

Photo 30: Soil pit in Wetland 4 at Photo Point 4

Photo 31: Wetland 5 at Photo Point 5; looking North toward upland area

Photo 33: Wetland 5 at Photo Point 5; looking South

Photo 35: Wetland 4 at Photo Point 4; looking Down

Photo 32: Wetland 5 at Photo Point 5; looking East toward upland area

Photo 34: Wetland 4 at Photo Point 4; looking West

Photo 36: Soil pit in Wetland 4 at Photo Point 4

APPENDIX C - DATABASE SEARCH RESULTS

Search ACIMS Data

Date: 6/1/2019
Requestor: Consultant
Reason for Request: Environmental Assessment

SEC: 29 TWP: 057 RGE: 21 MER: 4
Alberta Parks

Non-sensitive EOs: 0 (Data Updated:October 2017)

M-RR-TIT-SS	EO_ID	ECODE	S_RANK	SNAME	SCOMNAME	LAST_OBS_D	
No Non-sensitive EOs Found: Next Steps - See FAQ							
\square Sensitive EOs: 0 (Data Updated:October 2017)							
M-RR-ITT	EO_ID	ECODE	S_RANK	SNAME	SCOMNAME		
No Sensitive EOs Found: Next Steps - See FAQ							
\square Protected Areas: 0 (Data Updated:October 2017)							
M-RR-TIT-SS		PROTECTE	AREA NAME			TYPE	IUCN
No Protected Areas Found							

\square Crown Reservations/Notations: 0 (Data Updated:October 2017)
TYPE
No Crown Reservations/Notations Found

Fish and Wildlife Internet Mapping Tool (FWIMT)

(source database: Fish and Wildlife Management Information System (FWMIS))

Species Summary Report

Report Created: 6-Jan-2019 15:17

Species present within the current extent:			
Fish Inventory	Wildlife Inventory No Specjes Found in Search Extent		ntory Found in Search Extent
Buffer Extent			
Centroid (X, Y) :	Projection	Centroid: (Qtr Sec Twp Ring Mer)	Radius or Dimensions
625087, 5977838	10-TM AEP Forest	SW 2957214	1 kilometers
Contact Information			
For contact information, please visit			
Intip:/waep.aberta.ca/about-us/contact-us/hsherles-widdife-management-area-contacts.aspx			

Sturgeon County, Province of Aberta, Esri Canada, Esri, HERE, Garmin, USGS, METI/NASA, EPA, USDA, AAFC, NRCan | Copyright Government of Alberta

Function (ABWRET-A Raw Score)	$\begin{gathered} \text { Wetland } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wetland } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wetland } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wetland } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wetland } \\ 5 \\ \hline \end{gathered}$
Surface Water Storage (WS)	5.67	6.15	1.64	5.37	4.86
Stream Flow Support (SFS)	0.00	0.00	0.00	0.00	0.00
Streamwater Cooling (WC)	0.00	0.00	0.00	0.00	0.00
Sediment \& Toxic a nt Retention \& Sta bilization (SR)	10.00	10.00	10.00	10.00	10.00
Phosphorus Retention (PR)	10.00	10.00	10.00	10.00	10.00
Nitrate Removal \& Retention (NR)	10.00	10.00	10.00	10.00	10.00
Organic Nutrient Export (OE)	0.00	0.00	0.00	0.00	0.00
Fish Ha bitat (FH)	0.00	0.00	0.00	0.00	0.00
Aquatic Invertebrate Habitat (INV)	5.51	5.70	4.65	4.74	4.37
Amphibian Habitat (AM)	4.31	3.14	2.55	3.80	2.72
Waterbird Habitat (WB)	5.92	5.87	4.66	5.12	4.96
Songbird, Raptor, \& Mammal Habitat (SBM)	3.42	4.98	2.15	2.50	2.72
Pollinator \& Native Plant Habitat (PH)	3.96	4.38	2.88	3.30	3.33
Human Use \& Recognition (HU)	1.60	2.24	1.61	1.41	1.52
Function (ABWRET-A Nomalized Sc ore)	Wetland 1	$\begin{gathered} \text { Wetland } \\ 2 \end{gathered}$	$\begin{gathered} \text { Wetland } \\ 3 \end{gathered}$	Wetland 4	Wetland 5
Surface Water Storage (WS)	0.76	0.85	0.06	0.71	0.62
Stream Flow Support (SFS)	0.00	0.00	0.00	0.00	0.00
Streamwater Cooling (WC)	0.00	0.00	0.00	0.00	0.00
Sediment \& Toxic ant Retention \& Stabilization (SR)	1.00	1.00	1.00	1.00	1.00
Phosphorus Retention (PR)	1.00	1.00	1.00	1.00	1.00
Nitrate Removal \& Retention (NR)	1.00	1.00	1.00	1.00	1.00
Organic Nutrient Export (OE)	0.00	0.00	0.00	0.00	0.00
Fish Ha bitat (FH)	0.00	0.00	0.00	0.00	0.00
Aquatic Invertebrate Habitat (INV)	0.56	0.59	0.45	0.46	0.41
Amphibian Habitat (AM)	0.61	0.42	0.32	0.53	0.35
Waterbird Habitat (WB)	0.50	0.49	0.34	0.40	0.38
Songbird, Raptor, \& Mammal Habitat (SBM)	0.34	0.63	0.11	0.17	0.21
Pollinator \& Native Plant Habitat (PH)	0.39	0.46	0.20	0.28	0.28
Human Use \& Recognition (HU)	0.11	0.24	0.11	0.07	0.09
Nomalized Score (ABWRET A) Based on Wetlands in RWNAU	Wetland 1	$\begin{gathered} \hline \text { Wetland } \\ 2 \\ \hline \end{gathered}$	Wetland 3	Wetland 4	Wetland 5
Normalized Hydrologic al Health (HH)	0.76	0.85	0.06	0.71	0.62
Normalized Water Quality (WQ)	1.00	1.00	1.00	1.00	1.00
Normalized Ecological Health (EH)	0.61	0.63	0.45	0.53	0.41
Normalized Human Use (HU)	0.11	0.24	0.11	0.07	0.09
RWVAU \#	2	2	2	2	2
Normalized Value Score (ABWRET_a)	0.72	0.77	0.46	0.68	0.62
Value Category (a, b, c, d)	c	C	d	d	d
Abundance Factor	0	0	0	0	0
Final Score (A, B, C, D)	C	C	D	D	D

Appendix E1

Traffic Impact Assessment

 (McElhanney)September 14, 2020
0974200 Ltd.
6671 Elm Road
Lantzville, BC VOR 2H0

Attention: Bob Eakin

RE: Redwater Industrial Subdivision Traffic Impact Assessment

As requested, McElhanney Ltd. (McElhanney) has prepared the following Traffic Impact Assessment report for the Redwater Industrial Subdivision located near Highway 38 and 44 Street. The following report outlines the summary of the existing highway conditions, the proposed improvements and the traffic impacts with the development.

We trust this report will provide the necessary support for the roadside development application process. Should you have any questions, please do not hesitate to contact one of the undersigned.

Sincerely,
McEIhanney Ltd.

Prepared by:

Elaine Lau, P.Eng., PTOE
Senior Transportation Engineer
eklau@mcelhanney.com | 780-809-3234

Reviewed by:

Derek Yin, PhD., P.Eng.
Division Manager, Highways
dyin@mcelhanney.com | 780-809-3210

1.1 STUDY PURPOSE AND OBJECTIVE

0974200 Ltd. (the Developer) is proposing to develop a subdivision site for a range of industrial uses. The proposed development is located within the Town of Redwater, AB along $44^{\text {th }}$ Street. The development location is highlighted in Figure 1.

The proposed development requires a Traffic Impact Assessment (TIA) for the intersections of Highway $38 / 44^{\text {th }}$ Street and $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue as part of development approvals. McElhanney Ltd. (McElhanney) has been commissioned to prepare a traffic impact study for the proposed development. The objectives of this Traffic Impact Assessment are to examine the intersection performance with the proposed development and to recommend necessary road improvements that will maintain acceptable traffic operations at the highway access location for the next 20 years.

The TIA follows the guidelines and procedure as published by the Institute of Transportation Engineers (ITE) as well as Alberta Transportation's TIA Guidelines.

1.2 PROPOSED DEVELOPMENT

The site is located within the Town of Redwater, AB, adjacent to $44^{\text {th }}$ Street on SW 29-57-21 W4M as shown in Figure 1. Per the site plan located in Attachment A, the proposed development will have one access located at the existing intersection of $44^{\text {th }}$ Street and $54^{\text {th }}$ Avenue. Figure 2 outlines the layout of the proposed development. The development is expected to be completed in two phases as outlined in Table 1.

Table 1: Proposed Development by Phase

Phase	Land Use	Total Lot Size	Anticipated Full Build-Out Year
Phase 1	- Lot \#1: Mechanic shop with 4 to 5 employees. - Lot \#2: General contractor services site with laydown yard with 6 employees.	4.83 acres	2021
Phase 2	38 to 40 general industrial lots, with varied industrial uses based on the Town's Land Use Bylaw.	16.64 acres	2024

The following intersections are expected to be impacted by the development and were analyzed for the purpose of this assessment:

- Highway $38 / 44^{\text {th }}$ Street
- $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue

Figure 1: Study Area

Figure 2: Proposed Development Plan Layout

2.1 EXISTING HIGHWAY CONDITIONS

In the vicinity of the proposed development, Highway 38 is a paved two-lane undivided highway in the Level 3 service category with a posted speed of $50 \mathrm{~km} / \mathrm{h}$. The roadway has a rural cross-section with ditches lining both sides of the street. A small section of Highway 38 through the study area (the west leg of the intersection of Highway 38 and $44^{\text {th }}$ Street) does have curb and gutter lining the street through the Town of Redwater. The intersection of Highway 38 and $44^{\text {th }}$ Street is uncontrolled, illuminated and has a Type Ilc intersection treatment (see Figure 3) with a dedicated eastbound right-turn lane. Land uses adjacent to the intersection are comprised of mixed uses and empty lots.
$44^{\text {th }}$ Street is a paved two-lane undivided collector roadway with a posted speed of $50 \mathrm{~km} / \mathrm{h}$ in the vicinity of the proposed development. The roadway has a rural cross-section with ditches on both sides and illumination along the east side. The topography on $44^{\text {th }}$ Street is relatively flat. Land uses adjacent to the $44^{\text {th }}$ Street are general a mixed of residential, light industrial and open spaces.

The intersection of $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue is currently an uncontrolled T-intersection that provides local access to land uses (mostly residential) west of $44^{\text {th }}$ Street. The intersection is characterized as a local rural intersection and has a Type 1a intersection treatment, with no ditches or curb and gutter. Illumination is provided at the intersection.

Figure 4 through Figure 6 shows the study corridor and intersections.

Figure 3: Alberta Transportation Type Ia and IIc Intersection Configuration - Two-Lane Highway

Figure 4: Highway 38 and $44^{\text {th }}$ Street Intersection - Looking East (Image Source: Google Maps)

Figure 5: $44^{\text {th }}$ Street - Looking North (Image Source: Google Maps)

Figure 6: $44^{\text {th }}$ Street and $54^{\text {th }}$ Avenue Intersection - Looking North (Image Source: Google Maps)

2.2 EXISTING TRAFFIC CONDITIONS

Traffic counts were conducted by McElhanney at the intersection of $44^{\text {th }}$ Street and $54^{\text {th }}$ Avenue on April 8, 2019. The peak hours were found to be from 10:15-11:15 for the AM peak and from 4:00-5:00 for the PM peak. 2019 traffic counts were also available for the Highway $38 / 44^{\text {th }}$ Street intersection from Alberta Transportation Traffic Volume Data Map. The traffic count data can be found in Attachment B.

Based on the data, the daily vehicle composition of along Highway 38 and 44th Street is comprised mainly of passenger vehicles with approximately 5% to 11% trucks (single unit and heavy trucks), depending on the approach. The vehicle composition approaching each leg of the Highway 38 / 44th Street intersection is summarized in Table 2.

Table 2: 2019 Daily Vehicle Composition by Intersection Approach - Highway 38 / $44^{\text {th }}$ Street Intersection

Vehicle Composition	Highway 38 (East Approach)	Highway 644 (West Approach)	44th Street (North Approach)	Highway 38 (South Approach)
Passenger Vehicle	93.2%	87.9%	93.7%	88.7%
Recreational Vehicle	0.3%	0.4%	0.6%	0.3%
Bus	0.3%	0.5%	0.3%	0.4%
Single Unit Truck	3.7%	4.0%	4.2%	3.8%
Tractor Trailer Unit	2.5%	7.1%	1.1%	6.8%

Figure 7 depicts the existing (2019) peak hour traffic volumes at the study locations. Current peak hour turn volumes at both study intersections are relatively low. The heaviest movement is observed in the northbound left-turn, which it accommodates between 70 to 90 vehicles per hour during peak conditions.

Figure 7: Existing (2019) AM and PM Peak Hour Intersection Volume

3.1 BACKGROUND TRAFFIC

Historic traffic data obtained from traffic count station ATR 997120 (Highway 38 and $44^{\text {th }}$ Street intersection) indicates the background traffic has fluctuated along both roadways throughout the past 20 years. Growth along $44^{\text {th }}$ Street increased steadily at an average annual linear rate of 4% between 2002 and 2010 and since 2010, traffic along $44^{\text {th }}$ Street have decreased by an average rate of 4% per year. Overall, the average annual linear growth rate along $44^{\text {th }}$ Street is approximately 0.6% over the past 20 years.

Highway 38 experienced steady growth between 2008 and 2009 (an average annual growth of 2\% per year) and then almost a 15\% decrease in traffic between 2008 and 2009. Traffic volumes on Highway 38 grew again from 2009 to 2017 at an average rate of 3% per year and experienced a significant decrease between 2017 to 2018 (over 20\%). Overall, the average annual linear growth rate on Highway 38 is approximately -1.0% over the past 20 years.

Per the census data, the population of Redwater is declining at a rate of approximately 0.4% per year over the past 15 years from 2001 to 2016. Between 2011 and 2016, Redwater grew by 138 people, equivalent to an average growth rate of 1.4% per year.

With such fluctuations in the historical traffic data for each roadway, it is difficult to anticipate the growth rate in the coming years. Additionally, a residential development (Alluvium Residential Development) is currently planned on the west side of $44^{\text {th }}$ Street which will also utilize the intersection of Highway $38 / 44^{\text {th }}$ Street. Considering the fluctuating growth around Highway 38 and $44^{\text {th }}$ Street, as well as the Alluvium Residential Development, a growth rate of 2.5% was utilized to forecast future traffic projections for this TIA. While this is an aggressive growth rate and is much higher than the average linear growth rate over the past 10 to 20 years (0% or less), it captures growth from other development in the area as well as local and regional traffic growth on Highway 38 and $44^{\text {th }}$ Street.

Figure 8: 20-Year Historic AADT, Alberta Transportation Count Site 997120 (Highway 38 and Highway 644)

The proposed development is expected to be completed in two phases, with the anticipated opening day of Phase 1 in 2021 and Phase 2 in 2024. In addition to the 2021 and 2024, future AM and PM peak background traffic volumes were projected for the 2044 horizon - 20 years beyond the completion of Phase 2. The peak background traffic volumes under the 2021, 2024 and 2044 horizon are illustrated in Figure 9, Figure 10 and Figure 11, respectively.

Figure 9: 2021 Background Traffic Volumes

Figure 10: 2024 Background Traffic Volumes

Figure 11: 20-Year Horizon (2044) Background Traffic Volumes

3.2 DEVELOPMENT TRAFFIC

3.2.1 Trip Generation

Peak hour trip generation estimates were developed using the Trip Generation, 10th Edition, 2017, Institute of Transportation Engineers (ITE). Phase 1 of the development is expected to consist of a mechanic shop with 4 to 5 employees and a general contractor service business with a laydown yard on approximately 4.8 acres of land. Phase 2 of the development is expected to consist of 38 to 40 lots on approximately 16.6 acres of land for general industrial uses as per the Town's Land Use Bylaw, which range from automotive repair shops to self-service storage facilities and veterinary clinics.

Land use code 942 (Automobile Care Center) and land use code 110 (General Light Industrial) was used for Phase 1. For the purpose of this assessment, the gross floor area (GFA) of the mechanic shop and contractor service business is assumed to be $7,000 \mathrm{ft}^{2}$ and $5,000 \mathrm{ft}^{2}$, respectively. Land use code 130 (Industrial Park) was used for Phase 2 as this phase of development includes a range of industrial uses distributed over several lots. According to the Town's land use bylaw, the maximum site coverage is 60%. Assuming that the building size coverage is 50% of the allowable site coverage, the total GFA from Phase 2 is approximately $75,794 \mathrm{ft}^{2}$. Table 3 below presents the estimated trips generated by the development.

Table 3: Trip Generation Summary

Land Use Type	Gross Floor Area ($\mathrm{ft}{ }^{2}$)	Peak Hour	Trip Rate	In/Out Ratio		Trips		
				In \%	Out \%	In	Out	Total
PHASE 1 DEVELOPMENT								
942 Automobile Care Conter	7,000	AM	2.25	66\%	34\%	10	6	16
(Mechanic Shop)		PM	$T=2.41(X)+11.83$	48\%	52\%	14	15	39
110 General Light Industrial	5,000	AM	$\operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(X)+0.39$	88\%	12\%	4	1	5
		PM	$\operatorname{Ln}(\mathrm{T})=0.69 \operatorname{Ln}(\mathrm{X})+0.43$	13\%	87\%	1	4	5
				Phase 1 Total AM Trips		14	7	21
				Phase 1 Total PM Trips		15	19	34
PHASE 2 DEVELOPMENT								
130 Industrial Park	74,794	AM	0.40	81\%	19\%	24	6	30
		PM	0.40	21\%	79\%	6	24	30
TOTAL DEVELOPMENT								
Total Development AM Trips						38	13	51
Total Development PM Trips						21	43	64

Phase 1 of the development is expected to generate a total of 21 trips (14 in and 7 out) and 34 trips (15 in and 19 out) during the AM and PM peak hour, respectively. Phase 2 of the development will generate a total of 30 trips during both AM and PM peak hour. Overall, full build of the development will generate 51 trips and 64 trips during the AM and PM peak hour.

3.2.2 Trip Distribution

The trip distribution of traffic generated by the project development was estimated based on the surrounding infrastructure, specifically Highway 38 and the Town of Redwater. It is anticipated that the majority of vehicles accessing the site will be from out of town, and thus utilize Highway 38 to access the site. Based on the surrounding infrastructure, the following trip distribution was assumed:

- At the intersection of $44^{\text {th }}$ Street / proposed site access, 70% of the traffic will come or go to the south, and 30% will come or go to the north.
- At the intersection of Highway $38 / 44^{\text {th }}$ Street, 60% of the traffic will come or go to the west, 30% will come or go to the south and 10% will come or go from the east.

The site generated traffic volumes are presented in Figure 12 and Figure 13 for Phase 1 and Phase 2, respectively.

3.3 COMBINED TRAFFIC

The development trips estimated for the project development (Table 3) were added to the background traffic to determine traffic volumes for Opening Day Phase 1 (2021), Opening Day Phase 2 (2024) and future 20-year horizon (2044). The combined AM and PM peak hour traffic volumes under each horizon are presented in Figure 14 through to Figure 16. It should be noted that the traffic volumes in the 2024 and 2044 horizon includes both Phase 1 and Phase 2 development traffic.

Figure 12: Site-Generated Traffic Volumes - Phase 1 (2021)

Figure 13: Site-Generated Traffic Volumes - Phase 2 (2024)

Figure 14: 2021 (Opening Day, Phase 1) Combined AM and PM Peak Hour Intersection Volume

Figure 15: 2024 (Opening Day, Phase 2) Combined AM and PM Peak Hour Intersection Volume

Figure 16: 20-Year Horizon (2044) Combined AM and PM Peak Hour Intersection Volume

4.1 CAPACITY ANALYSIS

Traffic operational analysis for the study intersections were conducted using Synchro 10 traffic software. The Level of Service (LOS) under two-way stop control (TWSC) on minor roads was analyzed for the following six scenarios:

- Opening Day, Phase 1 (2021) - Background and Combined Condition'
- Opening Day, Phase 2 (2024) - Background and Combined Condition; and
- Future Year (2044) - Background and Combined Condition

The analysis results for study intersections are presented in Table 4 and Table 5. The analysis outputs are included in Attachment C.

Under both Opening Day, Phase 1 (2021) and Phase 2 (2024) horizon, the study intersections will operate under good level of service, with all approaches experiencing minimal delays and operating at LOS B or better during the AM and PM peak hour. With a linear background traffic growth of 2.5\% per year, both intersections will continue to operate at acceptable levels of service in 2044, with all approaches operating at a LOS C or better. The northbound approach at the Highway $38 / 44^{\text {th }}$ Street intersection will experience slightly longer delays in 2044, particularly in the PM peak, however, this approach will operate at a LOS C with the $95^{\text {th }}$ percentile queues estimated to be under 20 meters and a volume-to-capacity (v / c) ratio of 0.44 . Both intersections will have an overall intersection LOS A under the three planning horizons (2021, 2024 and 2044).

The addition of the proposed development is expected to have minimal impacts to the operations of both study intersections under the three planning horizons. Under the future (20-year) horizon, both intersections will continue to operate at a LOS A with the proposed development and background growth. All approaches will also operate at a LOS C or better, with relatively short $95^{\text {th }}$ percentile queues and v / c ratios well below 1.0. These findings suggest that the current design of the Highway $38 / 44^{\text {th }}$ Street intersection can accommodate the projected background growth and site-generated traffic without additional improvements. The $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue intersection will require an upgrade from the current T-intersection to a four-legged intersection to accommodate the proposed access. Additional warrant analysis was undertaken and described in the next subsections to determine whether other intersection treatments are required.

Table 4: AM and PM Peak Hour Intersection Performance Summary - Highway 38 / $44^{\text {th }}$ Street Intersection

Table 5: AM and PM Peak Hour Intersection Performance Summary - $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue Intersection

4.2 INTERSECTION TREATMENT WARRANT ANALYSIS

Alberta Transportation's Highway Geometric Design Guide (HGDG) provides criteria for the selection of an appropriate at-grade intersection treatment on two-lane rural highways. According to Figure D-7.4 of the HGDG, the proposed intersection treatment is a function of AADT on the main road and the intersecting road (as shown in Figure 17). The AADT for the intersecting approach was based on traffic data obtained from Alberta Transportation. Following this methodology, the intersection treatment for the intersection of $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue will warrant a Type II(c) intersection treatment at each time horizon. The existing intersection at Highway $38 / 44^{\text {th }}$ Street warrants further detailed analysis to determine the appropriate intersection treatment.

Detailed intersection treatment analysis that was carried out for the Highway $38 / 44^{\text {th }}$ Street intersection indicate that a Type II(c) treatment is warranted based on the percentage of left turns. The westbound left turn volume was used for this analysis as it is considered the heaviest left movement at the intersection. As shown in Figure 18, a Type II(c) treatment is warranted at each time horizon. The current intersection has an exclusive eastbound right-turn lane; however, a westbound right-turn lane is not warranted at any of the planning horizons based on the HGDG's right-turn warrant.

The AADT on Highway 38 (west of $44^{\text {th }}$ Street) is projected to exceed 4,000 vehicles per day in 2044. According to the HGDG, the overall access management of the highway should be considered before intersection treatments are constructed. It is worth noting that most of the growth on Highway 38 is attributed to the background growth and not the proposed development. Overall, the detailed intersection treatment analysis indicates that the current intersection treatment (Type II(c)) at Highway 38 and $44^{\text {th }}$ Street can support the projected traffic volumes (without and with development) under the 2044 horizon without further improvements.

Figure 17: At-Grade Intersection Treatment Warrant - Two-Lane Rural Highways

FIGURE D-7.6-2d WARRANTS FOR LEFT TURN TREATMENT AND STORAGE REQUIREMENTS FOR TWO-LANE HIGHWAYS DESIGN SPEED 60 KM/H, LEFT TURN 35\%, 40\%

Figure 18: Left-Turn Warrant - Highway 38 / $44^{\text {th }}$ Street

4.3 SIGHT DISTANCE

Intersection sight distance is defined as the sight distance available for drivers looking left and right along the main roadway from the point where vehicles are required to stop on an intersecting road before entering the intersection. The standard intersection sight distance requirement used in Alberta is based on the distance that is required for vehicles to turn left onto a major highway, without significantly interfering with vehicles approaching from the left at the design speed. This distance is adopted as a minimum for both directions for design purposes. According to the province's Highway Geometric Design Guide (see Attachment D), the minimum sight distance required along a main highway with a $60 \mathrm{~km} / \mathrm{h}$ design speed for a WB-17 vehicle is 230 meters and 310 meters for a WB- 21 vehicle.

Highway 38 and 44th Street are both flat and straight near the proposed intersection areas, with no horizontal or vertical curves located within the vicinity of either intersection. The sight distances in all directions is greater than 400 meters, exceeding the required 310 meters, meeting the intersection sight distance design criteria for both WB-17 and WB- 21 vehicles.

4.4 SIGNAL WARRANT ANALYSIS

Traffic signal warrant was carried out for the Highway $38 / 44^{\text {th }}$ Street intersection based on the Transportation Association of Canada's (TAC) Traffic Signal and Pedestrian Signal Head Warrant Handbook (June 2014). The analysis, provided in Attachment D, indicates that traffic signals are not warranted under Opening Day (Phase 1 and Phase 2) and 20-year conditions. Traffic signal warrant analysis was not carried out for the $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue intersection since traffic volumes are relatively lower than the Highway $38 / 44^{\text {th }}$ Street intersection and will not be warranted for a traffic signal.

4.5 ILLUMINATION WARRANT ANALYSIS

Both study intersections are currently illuminated, however, an illumination warrant for both intersections was conducted to determine whether further illumination improvements are required based on the warrants outlined in the Transportation Association of Canada's (TAC) Illumination of Isolated Rural Intersections (2001) guide. The analysis (see Attachment D) indicates that illumination at the Highway $38 / 44^{\text {th }}$ Street intersection is not warranted under the 2021 and 2024 horizon, but delineation lighting to illuminate cross street traffic is warranted under the 20-year (2044) horizon. Illumination is not warranted for the $44^{\text {th }}$ Street / 54 Avenue intersection under the 2044 horizon due to lower vehicle volumes.

4.6 PEDESTRIAN WARRANT ANALYSIS

It is anticipated that there will be no regular pedestrian traffic at either of the study intersections due to the lack of amenities surrounding the development. Therefore, no pedestrian movement accommodation is warranted.

This study has examined the traffic impacts associated with the proposed Industrial Subdivision. The conclusions and recommendations are summarized below:

- The traffic from both phases of the proposed development have minimal impact to the level of service on Highway 38 and $44^{\text {th }}$ Street. Both study intersections will continue to operate at a LOS A, with all approaches operating at a LOS C under the 2044 horizon during the peak hours.
- Intersection treatment warrant analysis indicate that a Type II(c) intersection treatment, which is aligned with the current intersection design for a two-lane highway is warranted for the intersection of Highway $38 / 44^{\text {th }}$ Street for the 20-year horizon. No further improvements are required to support the proposed development.
- Intersection treatment warrant analysis indicate that a Type II(c) intersection treatment for a twolane highway is warranted for the intersection of $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue to support the proposed site access. The design criteria should be confirmed through the preliminary and detail design stage.
- Sight distances at both intersections are adequate for the assumed design vehicle (WB-21).
- Illumination is not warranted at $44^{\text {th }}$ Street $/ 54^{\text {th }}$ Avenue intersection, however, delineation lighting to illuminate cross street traffic is warranted under the 20-year (2044) horizon for the Highway 38 $/ 44^{\text {th }}$ Street intersection. Both intersections are currently illuminated, and no further improvements are required to support the proposed development.
- Traffic signals and pedestrian accommodation are not warranted at the study intersections.

* : ロッํ

This Report entitled "Redwater Industrial Subdivision Traffic Impact Assessment" was prepared by McElhanney Ltd. under the authorization of 0974200 Ltd. The analysis, report and recommendations put forward, reflect the Consultants' best judgement with the available information. Any use of this information in a manner not intended, or with knowledge that situations have changed, shall not be the responsibility of McElhanney Ltd. or the undersigned.

Attachment A - Proposed Development Plan

PROPÓSED LOT LAYOUT FOR INDUSTRIAL SUBDIVISION REDWATER, ALBERTA

(WITHOUT LOT LINES)

PROPÓSED LOT LAYOUT FOR INDUSTRIAL SUBDIVISION REDWATER, ALBERTA

(CONDO AREA VS TOWN LANDS)

Attachment B - Traffic Data

Turning Movement Summary Diagram

Reference No.: 997120
Intersection of:
38 \& 644 AT REDWATER

North On 44 St			
Vehicle Type	Vol	$\%$	
A: Passenger Vehicle	581	93.7	
B: Recreational Vehicle	4	0.6	
C: Bus	2	0.3	
D: Single Unit Truck	26	4.2	
E: Tractor Trailer Unit	7	1.1	
ASDT 730	AADT	620	

Reference No.: 997120
Intersection of:
38 \& 644 AT REDWATER

2019 a.m. 100th Highest Hour ESTIMATES

TURNING MOVEMENT ABBREVIATIONS
NR: Traffic From North Turning Right
NL: Traffic From North Turning Left
NT: Traffic From North Proceeding Through
SR: Traffic From South Turning Right
SL: Traffic From South Turning Left
ST: Traffic From South Proceeding Through
ER: Traffic From East Turning Right
EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through
WR: Traffic From West Turning Right
WL: Traffic From West Turning Left
WT: Traffic From West Proceeding Through

North On 44 St			
Vehicle Type	Vol	$\%$	
A: Passenger Vehicle	37	90.2	
B: Recreational Vehicle	0	0.0	
C: Bus	1	2.4	
D: Single Unit Truck	3	7.3	
E: Tractor Trailer Unit	0	0.0	
41			
Total			

Reference No.: 997120
Intersection of:
38 \& 644 AT REDWATER

2019 p.m. 100th Highest Hour ESTIMATES

URNING MOVEMENT ABBREVIATIONS
NR: Traffic From North Turning Right
NL: Traffic From North Turning Left
NT: Traffic From North Proceeding Through
SR: Traffic From South Turning Right
SL: Traffic From South Turning Left
ST: Traffic From South Proceeding Through
ER: Traffic From East Turning Right
EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through
WR: Traffic From West Turning Right
WL: Traffic From West Turning Left
WT: Traffic From West Proceeding Through

North On 44 St			
Vehicle Type	Vol	$\%$	
A: Passenger Vehicle	57	96.6	
B: Recreational Vehicle	0	0.0	
C: Bus	1	1.7	
D: Single Unit Truck	0	0.0	
E: Tractor Trailer Unit	1	1.7	
59			

DIRECTIONAL TRAFFIC COUNT SUMMARY

HIGHWAY: 38
LATITUDE (degrees): 53.948993

REFERENCE NO.: 00997120 LONGITUDE (degrees): -113.099736

INTERSECTION OF: 38 \& 644 AT REDWATER LEGAL DESCRIPTION:

DAY \& DATE OF COUNT: THURSDAY, MAY 10, 2018
COUNT DURATION: 12 HOURS (7:00 AM TO 7:00 PM)

INTERVAL	APPROACHING INTERSECTION																														TOTALS
	FROM THE EAST ON 644															FROM THE WEST ON 38															
	LEFT					THROUGH					RIGHT					LEFT					THROUGH					RIGHT					
7:00-7:15 AM	1				1	4			1		1					2					10					10			1		31
7:15-7:30	3		1			6					3					7					16		1			10		1			48
7:30-7:45	3					3			1		1					3					10				1	9					31
7:45-8:00	7			1		12										2					4			1		5			1		33
8:00-8:15	5				2	9		1			2					2					6			2	1	6				1	37
8:15-8:30	3					13			1		1										9					10					37
8:30-8:45	1					7										2					3					5			1		19
8:45-9:00	1				1	7			1		1					1					8					7					27
9:00-9:15	4					12			4							3					3					9					35
9:15-9:30	3				1	10										4					3			1	2	11			3		38
9:30-9:45	4		1			7					2					3					3			1		11					32
9:45-10:00	5				1	10				2											4					6			1		29
10:00-10:15	3			1		5					1					1					13	1		1		5			1		32
10:15-10:30	6			1	2	11					2					1					7			1		6	1		2	1	41
10:30-10:45	1					11										3					6					7					28
10:45-11:00				1		11					2					3					8	1		1	2	6			1		36
11:00-11:15	2			1	1	10			1	1											13					8					37
11:15-11:30	6					8			2	2											8			1		8					35
11:30-11:45	6			1	2	6										1					9			1	2	9					37
11:45-12:00 PM	5					11			2							2					17					13			1	1	52
12:00-12:15	3					19					1					2					13					7					45
12:15-12:30	4				1	10			1		1					2					11					11				1	42
12:30-12:45	1					10				1	2					5					10				1	14			1	2	47
12:45-1:00	4			1	4	4										1					17			2	2	11				1	47
1:00-1:15	3				1	11					1					3					13			1	1	11				1	46
1:15-1:30	3				2	11					1					2					13					10				1	43
1:30-1:45	4				2	10			1	1	2					3					10					9			1		43
1:45-2:00	4			1	2	10					1			1		2					11					8					40
2:00-2:15	7				3	10					3			1		4					15					7					50
2:15-2:30	4				1	12															8					7					32
2:30-2:45	3			2	2	7					1			1		1					9					10			1		37
2:45-3:00	2				2	11			1	1						3					11	1				6					38
3:00-3:15	9				1	11										2					12					10					45
3:15-3:30	4				1	11			1	1									1		10			1		11					41
3:30-3:45	4				3	9				2	1					1					10				1	5				2	38
3:45-4:00	3				1	12			1							2					8					8			1		36
4:00-4:15	4			1	1	16		1	1							2					18					10					54
4:15-4:30	7				1	6				1						1					10					2				1	29
4:30-4:45	9				2	16		1			2					1					11					8				1	51
4:45-5:00	7					10										2				1	17					7				1	45
5:00-5:15	3				1	8										3					19					9			1		44
5:15-5:30	3				1	12					1					1					10					13					41
5:30-5:45	4					7										6					11			1		9					38
5:45-6:00	1				1	8										3					7					7					27
6:00-6:15					1	5										2			1		9			1		10					29
6:15-6:30						7					1										5					9					22
6:30-6:45	3				3	6										1					2					3					18
6:45-7:00 PM	2				1	4															3					4				1	15
VEH CLASS	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	
TOTALS	174		2	11	49	446		3	19	12	34			3		95			2	1	463	3	1	16	13	397	1	1	17	15	1778
	EL					ET					ER					WL					WT					WR					

LOCATION DIAGRAM ENCLOSED (Y/N):
YES
WEATHER CONDITIONS: OVERCAST, RAIN RECORDER(S): JOSHUA TOPLIFFE ROAD SURFACE CONDTIONS: WET COMMENTS:

VEHICLE CLASSES
A: PASSENGER VEHICLES
B: RECREATION VEHICLES C: BUSES
D: SINGLE UNIT TRUCKS
E: TRACTOR TRAILER COMBINATIONS

DIRECTIONAL TRAFFIC COUNT SUMMARY

HIGHWAY: 38
LATITUDE (degrees): 53.948993

REFERENCE NO.: 00997120 LONGITUDE (degrees): - 113.099736

INTERSECTION OF: 38 \& 644 AT REDWATER LEGAL DESCRIPTION:

DAY \& DATE OF COUNT: THURSDAY, MAY 10, 2018
COUNT DURATION: 12 HOURS (7:00 AM TO 7:00 PM)

INTERVAL	APPROACHING INTERSECTION																														TOTALS	$\begin{array}{\|c} \mid \text { GRAND } \\ \text { TOTALS } \end{array}$
	FROM THE NORTH ON 44 ST															FROM THE SOUTH ON 38																
	LEFT					THROUGH					RIGHT					LEFT					THROUGH					RIGHT						
7:00-7:15 AM	1					3					2					5		1	1		3					1					17	48
7:15-7:30	1					6					3					8					1					6					25	73
7:30-7:45	2					7			1		1					3			1		2					1					18	49
7:45-8:00	2					1					1					5			1	1	1					6					18	51
8:00-8:15	1					3					5					7					2					2				1	21	58
8:15-8:30	1			1		4										13					2					1					22	59
8:30-8:45						1					3			1		4										5				1	15	34
8:45-9:00						4					2					16			1		1					6			2	1	33	60
9:00-9:15	1										1					7				2	1					3				1	16	51
9:15-9:30						1					2					5										3			2	1	14	52
9:30-9:45	2					2					2					8			1						1	3				1	20	52
9:45-10:00	1									1	4					4					3			1		1					15	44
10:00-10:15	1					2					4					8					2					1					18	50
10:15-10:30	1					1										5			1		1					3			1		13	54
10:30-10:45	1					1					2					6			2		2			1							15	43
10:45-11:00											4					6			1		1					2				1	15	51
11:00-11:15	1										2					8					1					2				2	16	53
11:15-11:30	1					1					1					10					1					2			1		17	52
11:30-11:45											1		1	1		16			1		2					1					23	60
11:45-12:00 PM						2					6			1		18					5					6				2	40	92
12:00-12:15	2										1					11					2					1					17	62
12:15-12:30	1					1					5			1		14			1	1						4				1	29	71
12:30-12:45	1					4			1		2					11	1		1		1					2	1			2	27	74
12:45-1:00						2					5					7			1	1	1					1			1	1	20	67
1:00-1:15	1					2					3					11			1	1	1					2				1	23	69
1:15-1:30	1					2					3					10					1					3					20	63
1:30-1:45	1					1					2			1		9					2					2				1	19	62
1:45-2:00	2					1					2					8			1		2					3				1	20	60
2:00-2:15	2					1					1			1		9			2		2			1		3					22	72
2:15-2:30	3										5					5					4					3				1	21	53
2:30-2:45						1									1	13					1					2				1	19	56
2:45-3:00	2					2					2					6					1					3					16	54
3:00-3:15	1					3					1	1				14					2					3			2		27	72
3:15-3:30						1					3					13			2		5					6				1	31	72
3:30-3:45	1					1					3			1	1	12										2				3	24	62
3:45-4:00	1										3					6					3					3				3	19	55
4:00-4:15						3					4					16		1		1	1					3					29	83
4:15-4:30						1					2					14					4					6		2			29	58
4:30-4:45						2		1			10					24					6					11					54	105
4:45-5:00	1					1					2					18					4					5					31	76
5:00-5:15						1						1				34					9					6				3	54	98
5:15-5:30	3					2					2					17					8			1		4				1	38	79
5:30-5:45	1					5					1			1		25				1	4					4					42	80
5:45-6:00	1					3					3			1		20					1	1				5			1	1	37	64
6:00-6:15											3					17					4					5				1	30	59
6:15-6:30											4					14				1	1					2					22	44
6:30-6:45						1					2				1	13					3					5	1				26	44
6:45-7:00 PM		1				1					2					13				1	1									1	20	35
VEH CLASS	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E		
TOTALS	42	1		1		81		1	2	1	122	2	1	9	3	546	1	2	19	10	105	1		4	1	154	2	2	10	34	1157	2935
	NL					NT					NR					SL					ST					SR						

LOCATION DIAGRAM ENCLOSED (Y/N): YES
WEATHER CONDITIONS: OVERCAST, RAIN
RECORDER(S): JOSHUA TOPLIFFE ROAD SURFACE CONDTIONS: WET

COMMENTS:

McElhanney

243

WEST ON	54 AVENUE		
VEH TYPE	VOL	$\%$	
A: PASSENGER VEHICLES	462	96.65	
B: RECREATION VEHICLES	5	1.05	
C: BUSES	6	1.26	
D: SINGLE UNIT TRUCKS	4	0.84	
E: TRACTOR TRAILER COMB.	1	0.21	
TOTAL			

NL : TRAFFIC FROM NORTH TURNING LEFT
NT : TRAFFIC FROM NORTH PROCEEDING THROUGH NR : TRAFFIC FROM NORTH TURNING RIGHT
SL: TRAFFIC FROM SOUTH TURNING LEFT
ST : TRAFFIC FROM SOUTH PROCEEDING THROUGH SR : TRAFFIC FROM SOUTH TURNING RIGH
EL : TRAFFIC FROM EAST TURNING LEFT
ET : TRAFFIC FROM EAST PROCEEDING THROUGH
ER : TRAFFIC FROM EAST TURNING RIGHT
WL: TRAFFIC FROM WEST TURNING LEFT
WT : TRAFFIC FROM WEST PROCEEDING THROUGH
WR : TRAFFIC FROM WEST TURNING RIGHT

TURNING MOVEMENT SUMMARY DIAGRAM

WEST ON		
	VOL	$\%$
A: PASSENGER VEHICLES	494	96.86
B: RECREATION VEHICLES	5	0.98
C: BUSES	6	1.18
D: SINGLE UNIT TRUCKS	4	0.78
E: TRACTOR TRAILER COMB.	1	0.20
ASDT 560		

McEIhanney

Consulting Services Ltd.

McEIhanney

Attachment C - Synchro Traffic Analysis Outputs

	4	\rightarrow	\cdots	\checkmark		4	4	\dagger	p		\dagger	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\&			\&			\&	
Traffic Volume (veh/h)	4	0	23	5	0	2	7	11	10	4	7	6
Future Volume (Veh/h)	4	0	23	5	0	2	7	11	10	4	7	6
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	4	0	25	5	0	2	8	12	11	4	8	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	55	58	12	78	56	18	15			23		
$\mathrm{VC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	55	58	12	78	56	18	15			23		
tC, single (s) 7.1 6.5 6.2 7.1 6.5												
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	100	98	99	100	100	100			100		
cM capacity (veh/h)	941	830	1075	887	832	1064	1616			1599		
Direction Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	29	7	31	19								
Volume Left	4	5	8	4								
Volume Right	25	2	11	7								
	1054	931	1616	1599								
Volume to Capacity	0.03	0.01	0.00	0.00								
Queue Length 95th (m)	0.6	0.2	0.1	0.1								
Control Delay (s)	8.5	8.9	1.9	1.5								
Lane LOS	A	A	A	A								
Approach Delay (s)	8.5	8.9	1.9	1.5								
Approach LOS	A	A										
Intersection Summary												
Average Delay			4.6									
Intersection Capacity Utilization			13.3\%		U Level	Service			A			
Analysis Period (min)			15									

	$\stackrel{ }{*}$						4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\dagger			¢			¢	
Traffic Volume (veh/h)	7	0	37	0	0	0	11	16	0	0	11	10
Future Volume (Veh/h)	7	0	37	0	0	0	11	16	0	0	11	10
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	8	0	40	0	0	0	12	17	0	0	12	11
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	58	58	18	98	64	17	23			17		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	58	58	18	98	64	17	23			17		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
po queue free \%	99	100	96	100	100	100	99			100		
cM capacity (veh/h)	937	830	1067	850	824	1068	1605			1613		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	48	0	29	23								
Volume Left	8	0	12	0								
Volume Right	40	0	0	11								
CSH	1043	1700	1605	1613								
Volume to Capacity	0.05	0.00	0.01	0.00								
Queue Length 95th (m)	1.1	0.0	0.2	0.0								
Control Delay (s)	8.6	0.0	3.0	0.0								
Lane LOS	A	A	A									
Approach Delay (s)	8.6	0.0	3.0	0.0								
Approach LOS	A	A										
Intersection Summary												
Average Delay			5.0									
Intersection Capacity Utilization			18.1\%	ICU Level of Service					A			
Analysis Period (min)			15									

Attachment D - Warrant Analysis

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

OPERATIONAL FACTORS

ENVIRONMENTAL FACTOR

Lighted Developments within 150 m radius of intersection	2	2	Maximum of 4 quadrants	OK	10

COLLISION HISTORY

Average Annual night-time collision frequency due to inadequate lighting (collisions/yr, rounded to nearest whole \#) OR
Collision Rate over last 3 years, due to inadequate lighting (/MEV) is the average ratio of all night to day collisions >=1.5 (Y/N)
\square $0 \quad 0$ $0 \quad 0$ Enter either the annual frequency (See Table 1(C), note \#4) OR the number of collisions / MEV
0 (Unused values should be set to Zero)
(C), note \#4)

0 0

\square
OK 0

Check Intersection Signalization:
Intersection is not Signalized

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	45
Environmenta Factor Subtotal	10
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{6 1}$
TOL	

Illumination of Isolated Rural Intersections
 LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

OPERATIONAL FACTORS

ENVIRONMENTAL FACTOR

Lighted Developments within 150 m radius of intersection	2	2	Maximum of 4 quadrants	OK	10

COLLISION HISTORY

Average Annual night-time collision frequency due to inadequate lighting (collisions/yr, rounded to nearest whole \#) OR
0
n
$0 \quad$ (Unused values should be set to Zero)

OK		0
OK		0
OK		
	OK	

OK
0

Check Intersection Signalization:
Intersection is not Signalized

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	80
Environmental Factor Subtotal	10
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{9 6}$

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

OPERATIONAL FACTORS

ENVIRONMENTAL FACTOR

Lighted Developments within 150 m radius of intersection	2	5	Maximum of 4 quadrants	OK	10

COLLISION HISTORY

Average Annual night-time collision frequency due to inadequate lighting (collisions/yr, rounded to nearest whole \#) OR
Collision Rate over last 3 years, due to inadequate lighting (/MEV) is the average ratio of all night to day collisions >=1.5 (Y/N)
\square

Enter either the annual frequency (See Table 1(C), note \#4) OR the number of collisions / MEV
0 (Unused values should be set to Zero)

\square

Check Intersection Signalization:
Intersection is not Signalized

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	90
Environmental Factor Subtotal	10
Collision History Subtotal	0
TOTAL POINTS	106

Illumination of Isolated Rural Intersections
 LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

OPERATIONAL FACTORS

Is the intersection signalized? (Y / N)	n			Calculate the Signalization Warrant Factor		
AADT on Major Road (2-way)	4404	3	10	Either Use the two AADT inputs OR the Descriptive Signalization	OK	30
AADT on Minor Road (2-way)	2084	4	20	Warrant (Unused values should be set to Zero) Refer to Table	OK	80
Signalization Warrant	Descriptive	0	30	1(B) for description and rating values for signalization warrant.	OK	
Night-Time Hourly Pedestrian Volume	0	0	10	Refer to Table 1(B), note \#2, to account for children and seniors	OK	0
Intersecting Roadway Classification	Descriptive	4	5	Refer to Table 1(B) for ratings.	OK	20
Operating Speed or Posted Speed on Major Road (km/h)	50	0	5	Refer to Table 1(B), note \#3	OK	0
Operating Speed on Minor Road (km/h)	50	0	5	Refer to Table 1(B), note \#3	OK	0
Operational Factors Subtotal						130
ENVIRONMENTAL FACTOR						
Lighted Developments within 150 m radius of intersection	2	2	5	Maximum of 4 quadrants	OK	10
Environmental Factor Subtotal						10

COLLISION HISTORY

Average Annual night-time collision frequency due to inadequate lighting (collisions/yr, rounded to nearest whole \#) OR
Collision Rate over last 3 years, due to inadequate lighting (/MEV) is the average ratio of all night to day collisions >=1.5 (Y/N)
\square00
00 either the annual frequency OR the number of collisions / MEV
0 (Unused values should be set to Zero)

Collision History Subtotal

Check Intersection Signalization:
Intersection is not Signalized
ILLUMINATION WARRANTED
DELINEATION LIGHTING TO ILLUMINATE PEDESTRIANS OR CROSS STREET TRAFFIC

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	130
Environmental Factor Subtotal	10
Collision History Subtotal	0
TOTAL POINTS	146
Tren	

 $D=$ REOUIRED SIGHT DISTANCE ALONG MAJOR TWO-LANE HIGHWAY IN METRES

- INTERSECTION SIGHT DISTANCE (I.S.D.)
- The l.S.D.'s Shown in this figure are based on the distance travelled AT DESIGN SPEED DURING A CRITICAL TIME (SHOWN ON THE FIGURE IN SECONDS). THE CRITICAL TIME INCLUDES THE TIME TAKEN FOR THE MANOEUNRE (LEFT TURN FROM THE MINOR ROAD) PLUS 2 SECONDS FOR PERCEPTION/REACTION TME.
- THE INTERSECTION SIGHT DISTANCE AVAILABLE IS TO BE DETERMNED USING AN EyE height (based on the design vehicle) located at the junction and an OBJECT HEIGHT OF 1.3 m (REPRESENTING THE ROOF OF A PASSENGER VEHICLE) ON THE THROUGH ALIGNMENT. THE EYE HEIGHTS TO BE USED ARE SHOWN IN FIGURE D-50.

NOTES:
I. To determine the sight distance requirements ot on intersection, the designer should select the longest vehicie or vehicie with the greotest I.S.D. need, that uses the intersection on a regulor bosis, i, ie., doily. Becouse of the vorious eye heights, the I.S.D. available for several design vehicles moy have to be checked.
2. The usefulness of intersection sight distances in excess of 500 m has been deboted and will be the subject of future reseorch into gop acceptance by large trucks on rural highwoys in Alberio. Chonges to this toble moy be mode bosed on thot reseorch.

Contact

Elaine Lau, P.Eng., PTOE 780-809-3234
eklau@mcelhanney.com

Appendix E2

Traffic Impact Assessment

 Amendment(D\&A Paulichuk Consulting Ltd.)

TRAFFC IMPACTASSESSMENT UPDATE/ AMENDMENT

REDWATER INDUSIRIALSUBDIVISION

 44 ${ }^{\text {th }}$ Street, Highway 38:10 \& Highway 644 SW 29-57-21-W4MTown of Redwater

LOCATION PLAN L-1

LOCATION PLAN L-2

LOCATION PLAN L-3

SPIN PLAN SP-1

DEVELOPMENT PLAN

DEVELOPMENT PLAN 2

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 1	3800.00 m	0.38 ha .	0.94 ac .
UNIT 2	$3800.00 \mathrm{~m}^{2}$	0.38 ho .	0.94oc.
UNIT 3	$4087.72 \mathrm{~m}^{2}$	0.41 ha .	1.01ac.
UNIT 4	$4238.98 \mathrm{~m}^{2}$	0.42ha.	1.05ac.
UNIT 5	$4250.00 \mathrm{~m}^{2}$	0.42 ha .	1.05ac.
UNIT 6	4238.19 m	0.42 ha .	1.05ac.
UNIT 7	4925.96 m	0.49 ha .	1.22ac.
UNIT 8	$4942.80 \mathrm{~m}^{2}$	0.49 ha .	1.22ac.
UNIT 9	4904.73 m	0.49 ha .	1.21ac.
UNIT 10	$4912.36 \mathrm{~m}^{2}$	0.49 ha .	1.21ac.
UNIT 11	4046.86 m	0.40 ha .	1.00ac.
UNIT 12	$4046.86 \mathrm{~m}^{2}$	0.40 ho .	1.00ac.
UNIT 13	4046.86 m	0.40 ha .	1.00ac.
UNIT 14	4046.86 m	0.40 ha .	1.00ac.
UNIT 15	4046.86 m	0.40 ha .	1.00ac.
UNIT 16	$4025.38 \mathrm{~m}^{2}$	0.40 ha .	0.99ac.
UNIT 17	4030.00 m	0.40 ha .	1.00ac.
UNIT 18	4030.00 m	0.40 ha .	1.00ac.

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 19	4675.00 m	0.47 ha .	1.16ac.
UNIT 20	4675.00 m	0.47 ha .	1.16 oc .
UNIT 21	4675.00 m	0.47 ha .	1.16ac.
UNIT 22	$4675.00 \mathrm{~m}^{2}$	0.47 ha .	1.16 ac .
UNIT 23	4682.26 m	0.47 ha .	1.16 ac .
UNIT 24	$4561.58 \mathrm{~m}^{2}$	0.46 ha .	1.13 oc .
UNIT 25	4259.80 m	0.43 ha .	1.05ac.
UNIT 26	4275.57 m	0.43 ha .	1.06ac.
UNIT 27	$4272.82 \mathrm{~m}^{2}$	0.43 ha .	1.06ac.
UNIT 28	$4305.67 \mathrm{~m}^{2}$	0.43 ha .	1.06ac.
UNIT 29	5182.04 m	0.52 ha .	1.28ac.
UNIT 30	4361.10 m	0.44 ha .	1.08ac.
UNIT 31	$4364.47 \mathrm{~m}{ }^{2}$	0.44 ha .	1.08ac.
UNIT 32	4382.05 m	0.44 ha .	1.08ac.
UNIT 33	$4361.77 \mathrm{~m}^{2}$	0.44 ha .	1.08ac.
UNIT 34	4355.37 m	0.44 ha .	1.08ac.
UNIT 35	23343.89 m	2.33 ha .	5.77 ac .
UNIT 36	12824.68 m	1.28ho.	3.17 ac .

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 37	10778.40 m	1.08ha.	2.66 oc .
UNIT 38	19876.15 m	1.99ha.	4.91 oc .
UNIT 39	$2902.00 \mathrm{~m}^{2}$	0.29 ha .	0.72 ac .
UNIT 40	$14229.26 \mathrm{~m}^{2}$	1.42 ha .	3.52ac.
UNIT 41	$7914.45 \mathrm{~m}^{2}$	0.79 ha .	1.96 ac .
UNIT 42	7496.30 m	0.75 ha .	1.85 oc .
UNIT 43	2648.06 m	0.26 ha .	0.65 ac .
UNIT 44	$5246.26 \mathrm{~m}^{2}$	0.52 ha .	1.30 ac .
UNIT 45	77.87 m	0.01 ha .	0.02ac.
UNIT 46	$716.12 \mathrm{~m}^{2}$	0.07 ha .	0.18 ac .
UNIT 47	3072.49 m	0.31 ha .	0.76 ac .
UNIT 48	1377.66 m	0.14 ho .	0.34 oc .
UNIT 49	95514.77 m	9.55 ho .	23.60 ac .
UNIT 50	1208.44 m	0.12 ho .	0.30ac.
UNIT 51	6238.44 m	0.62 ho .	1.54ac.
UNIT 52	$1510.19 \mathrm{~m}^{2}$	0.15 ha .	0.37 ac .

TABLE OF CONIENIS

LOCATION PLAN L-1 2
LOCATION PLAN L-2 2
LOCATION PLAN L-3 3
SPIN PLAN SP-1 4
DEVELOPMENTPLAN 1 5
DEVELOPMENTPLAN 2. 6

1. INTRODUCTION \& METHODOLGY 8
2. PROPOSED DEVELOPMENT. 9
2.1 Development Details 9
2.2 Land Use \& Trip Generation Types 14
2.2.1 Lot to Building Ratios 14
2.2.2 Land UsesforTraffic Projection 16
2.3 Trip Generation Determination. 18
2.4 Trip Distribution 23
2.5 New Development Traffic 25
3. EXISTING CONDITIONS 28
3.1 Physic al Properties - Hwy. 38:10 \& Hwy. 644:02 28
3.2 Traffic Properties - Hwy. 38:10 \& Hwy. 644:02 30
3.3 Site Observations - Hwy. 38:10 \& Hwy. 644:02 32
3.4 Highway Traffic Projections - Hwy. 38:10, Hwy. 644:02, Local Roads 34
3.5 Other Background Traffic Generation 36
3.6 Total Background Traffic 41
3.7 Combined Traffic Projections 44
4. TRAFFIC ANALYSIS - Hwy. 38 :10, Hwy. 644 :02 \& 44th Street 48
4.1 Design Speed 48
4.2 Determination Based on Traffic Volume Warrant Chart 48
4.3 Detailed Analysis 49
4.4 Intersectional Sight Distance 56
4.5 Illumination \& Signalization 57
4.6 Capacity Analysis. 59
4.7 Analysis Summary 62
5. TRAFFIC ANALYSIS - Hwy. $644: 02$ \& 47th Street 66
5.1 Design Speed 66
5.2 Determination Based on Traffic Volume Warant Chart 66
5.3 Detailed Analysis 67
5.4 Intersectional Sight Distance 70
5.5 Illumination \& Signa lization 71
5.6 Capacity Analysis. 72
5.7 Ana lysis Summary 74
6. TRAFFIC ANALYSIS - 47th Street \& 54th Avenue 79
6.1 Design Speed 79
6.2 Determination Based on Traffic Volume Warrant Chart 79
6.3 Capacity Analysis. 79
6.4 Intersectional Sight Distance 81
6.5 Illumination \& Signa lization 82
6.6 Analysis Summa ry 82
7. CONCLUSION \& REC OMMENDATIONS 84
7.1 Recommendations 84
7.2 Closure 94
APPENDIX A - TRAFFIC DATA
APPENDIX B - Hwy. 38:10, Hwy. 644:02 \& 44TH STREETINTERSEC TION ANALYSIS
APPENDIX C - Hwy. 644:02 \& 47깨 STREETINTERSEC TION ANALYSIS
APPENDIX D - 44TH Street \& 54 ${ }^{\text {TH }}$ Avenue Intersec tion Analysis

1. INTRODUCTION \& METHODOLGY

This report is a Traffic Impact Assessment (TIA) Update and Amendment to the Traffic Impact Assessment prepared by McElhanney for this development site dated September 14, 2020. The parcel is a pproximately $400 \mathrm{~m} \times 800 \mathrm{~m}$ for 32.0 ha (79.1 acres) in size. See Location and Development Plans before this report.

This report a mendment has been prepared to determine the impact of the proposed development on traffic using Highway 38:10 East-West (48 ${ }^{\text {th }}$ Avenue), Highway 38:10 South-North (44 Street), Highway 644:02 (48 ${ }^{\text {th }}$ Avenue) and 44 Street Local Road in the Town of Redwater. Since a TIA forthe site has recently been prepared, the scope of work in this case is to address the comments provided by Alberta Transportation on the review of the last TIA asfollows:

- Include residential subdivision to the west of 44 Street, known as Alluvium Redwater Subdivision.
- Include traffic generated from undeveloped lots within the Industrial Subdivision directly south of the proposed development.
- Consider all the approved and discretionary uses allowed on these parcels under the land use policy and assume that a reasonable percentage of the lots will choose these less common development options.
- Address an additional public road connection to Highway 644:02 (48 ${ }^{\text {th }}$ Avenue) from $46^{\text {th }}$ Street
- Complete intersectional analysis of the following intersections and accurately project what improvements are warranted:
- Highway 38:10, Highway 644:02 and 44th Street intersection
- Highway 644:02 and 47th Street intersection
- $44^{\text {th }}$ Street $\&$ Proposed Subdivision Access/54th Avenue
- Address Round about versus Signa lization at junction of Highway 38:10, Highway 644:02 and $44^{\text {th }}$ Street intersection

This report update/amendment is based on information provided by the developers of the site, site observations from Mr. Darcy Paulichuk, P. Eng., traffic volume data from Alberta Transportation, intersectional analysis procedures and standards documented in Alberta Infrastructure and Transportation's "Highway Geometric Design Guide", 1999, and Alberta Infrastructure and Transportation's "Traffic Impact Assessment Guideline", 2005.

This report has been prepared for the developers of the site for purposes of gaining approval from munic ipal and provincial govemmentsforthe development of thissite.

2. PROPOSED DEVELOPMENT

2.1 Development Details

The proposed development is an Industrial Park Subdivision under the Town of Redwater's Land Use District defined as "Industrial (M2) District) as shown below:

The Permitted and Discretionary Uses for this land use are as follows:

Permitted Uses

(1) Automotive and equipment repa ir shops, heavy
(2) Automotive and equipment repair shops, light
(3) Automotive and recreational vehic les sales/rental establishments, heavy
(4) Automotive and recreational vehic les sales/rental establishments, light
(5) Business support senvic es esta blishments
(6) Cannabis production and distribution facilities
(7) Drive-in businesses, but only if they are drive-through vehicle service establishments
(8) Equipment rental esta blishments
(9) Extensive agric ulture
(10) Fleet services
(11) General contractor services
(12) Greenhouses and plant nurseries
(13) Industrial hemp production and distribution facilities
(14) Industrial vehicle and equipment sales/rental esta blishments
(15) Light industrial uses
(16) Limited contractor services
(17) Outdoorstorage
(18) Public parks
(19) Public uses
(20) Public utilities
(21) Recycling depots
(22) Sea cans
(23) Self-service storage facilities
(24) Service stations
(25) Solar energy collection systems
(26) Trucking a nd carta ge establishments
(27) Truck and recreational vehicle sales/rental establishments
(28) Veterina ry clinics
(29) Wind energy conversion systems, micro
(30) Buildings and uses accessory to permitted uses

Discretionary Uses

(1) Agricultural industry
(2) Amusement establishments, outdoor
(3) Animal hospitals
(4) Auctioneering esta blishments
(5) Eating and drinking establishments
(6) Heavy industrial uses
(7) Heavy petrochemical industrial uses
(8) Large a nimal veterinary clinics
(9) Large wind energy conversion systems
(10) Major utility services
(11) Recreational vehicle campgrounds, seasonal
(12) Recreational vehicle campgrounds, workcamp
(13) Recreationalvehicle storage
(14) Small a nimal breeding and boarding establishments
(15) Small radio communications towers
(16) Wind energy conversion systems, small
(17) Surveillance suites

TIA UPDATE/AMENDMENT

(18) Staging area
(19) Wireless communic ations facilities
(20) Workcamps
(21) Workc a mps, short term
(22) Other uses which, in the opinion of the Development Authority, are similar to the above mentioned permitted and discretionary uses
(23) Buildings and uses accessory to disc retionary uses

The conceptual layout for the Proposed Development is shown below:

REDWATER INDUSIRIAL SUBDIVISION 44th Street, Hwy. 38:10 \& Hwy. 644 SW 29-57-21-W4M Town of Redwater

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 1	$3800.00 \mathrm{~m}^{2}$	0.38 ho .	0.94ac.
UNIT 2	3800.00 m	0.38 ho .	0.94 ac .
UNIT 3	4087.72 m	0.41 ha .	1.01ac.
UNIT 4	$4238.98 \mathrm{~m}^{2}$	0.42 ha .	1.05ac.
UNIT 5	$4250.00 \mathrm{~m}^{2}$	0.42 ha .	1.05ac.
UNIT 6	4238.19 m	0.42 ha .	1.05ac.
UNIT 7	4925.96 m	0.49 ha .	1.22ac.
UNIT 8	4942.80 m	0.49 ho .	1.22oc.
UNIT 9	4904.73 m	0.49 ha .	1.21ac.
UNIT 10	$4912.36 \mathrm{~m}^{2}$	0.49 ha .	1.21ac.
UNIT 11	4046.86 m	0.40 ha .	1.00ac.
UNIT 12	$4046.86 \mathrm{~m}^{2}$	0.40 ho .	1.00ac.
UNIT 13	4046.86 m	0.40 ho .	1.00ac.
UNIT 14	4046.86 m	0.40 ha .	1.00ac.
UNIT 15	4046.86 m	0.40 ha .	1.00ac.
UNIT 16	$4025.38 \mathrm{~m}^{2}$	0.40 ha .	0.99ac.
UNIT 17	4030.00 m	0.40 ha .	1.00 oc.
UNIT 18	4030.00 m	0.40 ha .	1.00ac.

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 19	4675.00 m	0.47 ha.	1.16 ac.
UNIT 20	$4675.00 \mathrm{~m}^{2}$	0.47 ha.	1.16 ac.
UNIT 21	4675.00 m	0.47 ha.	1.16 ac.
UNIT 22	$4675.00 \mathrm{~m}^{2}$	0.47 ha.	1.16 ac.
UNIT 23	4682.26 m	0.47 ha.	1.16 ac.
UNIT 24	$4561.58 \mathrm{~m}^{2}$	0.46 ha.	1.13 ac.
UNIT 25	4259.80 m	0.43 ha.	1.05 ac.
UNIT 26	$4275.57 \mathrm{~m}^{2}$	0.43 ha.	1.06 ac.
UNIT 27	$4272.82 \mathrm{~m}^{2}$	0.43 ha.	1.06 ac.
UNIT 28	$4305.67 \mathrm{~m}^{2}$	0.43 ha.	1.06 ac.
UNIT 29	$5182.04 \mathrm{~m}^{2}$	0.52 ha.	1.28 ac.
UNIT 30	4361.10 m	0.44 ha.	1.08 ac.
UNIT 31	$4364.47 \mathrm{~m}^{2}$	0.44 ha.	1.08 ac.
UNIT 32	4382.05 m	0.44 ha.	1.08 ac.
UNIT 33	$4361.77 \mathrm{~m}^{2}$	0.44 ha.	1.08 ac.
UNIT 34	4355.37 m	0.44 ha.	$1.08 \mathrm{ac}.$.
UNIT 35	23343.89 m	2.33 ha.	5.77 ac.
UNIT 36	12824.68 m	1.28 ha.	3.17 ac.

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 37	10778.40 m	1.08ho.	2.66 oc .
UNIT 38	$19876.15 \mathrm{~m}^{2}$	1.99ha.	4.91ac.
UNIT 39	$2902.00 \mathrm{~m}^{2}$	0.29 ho .	0.72oc.
UNIT 40	$14229.26 \mathrm{~m}^{2}$	1.42ha.	3.52 ac .
UNIT 41	$7914.45 \mathrm{~m}^{2}$	0.79 ha .	1.96ac.
UNIT 42	7496.30 m	0.75 ho .	1.85ac.
UNIT 43	2648.06 m	0.26 ho .	0.65 oc .
UNIT 44	$5246.26 \mathrm{~m}^{2}$	0.52 ho .	1.30ac.
UNIT 45	77.87 m	0.01ha.	0.02ac.
UNIT 46	$716.12 \mathrm{~m}^{2}$	0.07 ha .	0.18 ac .
UNIT 47	3072.49 m	0.31 ha .	0.76 ac .
UNIT 48	1377.66 m	0.14 ha.	0.34 oc .
UNIT 49	95514.77 m	9.55 ho .	23.60 ac .
UNIT 50	1208.44 m	0.12 ho .	0.30ac.
UNIT 51	6238.44 m	0.62 ha .	1.54 ac .
UNIT 52	$1510.19 \mathrm{~m}^{2}$	0.15 ha .	0.37ac.

The proposed layout createsa new accessonto $44^{\text {th }}$ Street to the west at $54^{\text {th }}$ Avenue and a secondary access to the south through the existing industrial subdivision onto Highway 644:02 ($48^{\text {th }}$ Avenue) at 47 Street.

The anticipated phasing of the development is shown below:

$\mathrm{D}_{\text {\& }}$
PaULICHUK

2.2 Land Use \& Tip Generation Types

The proposed development can be separated into several land uses as allowed underthe Town's Land Use Bylaw. To properly project future traffic volumes, a variety of land uses for the development lots will need to be considered when calculating trip generation rates.

2.2.1 Lot to Building Ratios

It is first important to note that Institute of Transportation (ITE) land uses provide trip generation rates for areas of build ing gross floor area. For this reason, the building area to lot size ratios must detemined to project the size of potential building per development lot.

Industrial type lots tend to have a large area for working, storage of materials/equipment and open space. The area taken up for buildings is relatively low and hence build ing size is often directly related to traffic generation.

Below is an airphoto of the existing industrial park type development in the area. This is likely the best representation of what will continue to development in this area of Redwater.

REDWATER INDUSIRIAL SUBDIVISION

Area A: Lot Size: 5,250 m2 (56,500 ft2), Building(s) Size: 250 m 2 (2,700 ft2) (approx. 5\% of Lot Size)
Area B, Pyramid - Electrical \& Instrumental Services Lot Size: 4,125 m2 (44,400 ft2), Build ing Size: 536 m2 (5,770 ft2) (approx. 13\% of Lot Size)
Area C, Quinn Pumps - Mechanic al Supply \& Service Lot Size: 2,450 m2 (26,370 ft2), Build ing Size: 312 m2 ($3,360 \mathrm{ft} 2$) (approx. 13\% of Lot Size)

Area D: Lot Size: 2,450 m2 (26,370 ft2), Build ing(s) Size: 590 m2 (6,350 ft2) (approx. 24\% of Lot Size)

Area E: Lot Size: $8,400 \mathrm{~m} 2$ ($90,420 \mathrm{ft2}$), Build ing(s) Size: $360 \mathrm{~m} 2(3,875 \mathrm{ft2})$ (approx. 4.5\% of Lot Size)

Area F: Lot Size: 40,600 m2 (437,000 ft2), Building(s) Size: 1,100 m2 (11,840 ft2) (approx. 3\% of Lot Size)

Area G: Lot Size: 10,075 m2 (108,450 ft2), Build ing(s) Size: 415 m2 (4,470 ft2) (approx. 4\% of Lot Size)

Area H: Lot Size: 6,660 m2 (71,690 ft2), Building(s) Size: 625 m2 (6,730 ft2) (approx. 9.5\% of Lot Size)

Area I: Lot Size: 6,660 m2 (71,690 ft2), Building(s) Size: 0 m 2 (0 ft 2) (approx. 0\% of Lot Size)

Area J : Lot Size: $13,125 \mathrm{~m} 2$ ($141,280 \mathrm{ft2}$), Build ing(s) Size: 500 m 2 ($5,380 \mathrm{ft2}$) (a pprox. 4\% of Lot Size)

Area K: Lot Size: 13,625 m2 (146,660 ft2), Building(s) Size: 680 m2 ($7,320 \mathrm{ft2}$) (approx. 5\% of Lot Size)

Area L: Lot Size: 9,000 m2 (96,880 ft2), Build ing(s) Size: 600 m 2 ($6,460 \mathrm{ft2}$) (approx. 6.7\% of Lot Size)

Area M: Lot Size: 8,180 m2 (88,050 ft2), Build ing(s) Size: 260 m 2 (2,800 ft2) (approx. 3.2\% of Lot Size)

Area N: Lot Size: 16,100 m2 (173,300 ft2), Build ing(s) Size: 2,930 m2 (31,540 ft2) (approx. 18\% of Lot Size)

Area O: Lot Size: 21,100 m2 (227,130 ft2), Building(s) Size: 1,920 m2 (20,670 ft2)
(approx. 9.1\% of Lot Size)
For the purposes of this report, a gross building area of 3-5\% of the lot area will be used for projecting traffic (3% for large lots a nd 5% for small lots).

2.2.2 Land Uses for Traffic Projection

The land uses anticipated to be used in this development and their equivalent $\pi \mathbb{E}$ land use are assumed asfollows:

- Automotive and Equipment Repair Shops
- Small Manufa cturing Facilities
- Equipment Rental Establishments
- General ContractorServices
- Light Industrial Services
- Self-Service Storage Facilities
- Agricultural Industry
- Major Utility Service
- Building Supply Store

ITE 942, Automotive Care Center
ITE 140, Manufacturing
ITE 811, C onstruction Equipment Rental
ITE 180, Spec ialty Trade C ontractor
ITE 110, General Light Industrial
ITE 151, Mini-Warehouse
ITE 810, Tractor Supply Store
ITE 170, Utility
ITE 812, Building Materia Is \& Lumber Store

The above land uses are broken up into the following percentage and area of use for the development lot area.

The total lot area available for development is $195,431.89 \mathrm{~m} 2$. For Phase 1, $46,946.97 \mathrm{~m} 2$ will be developed and for Phase $2,148,484.92 \mathrm{~m} 2$ will be developed.

PHASE 1

Lot 35: Automotive and Equipment Repa ir Shop: 23,343.89m2 lot $\rightarrow 700 \mathrm{~m} 2$ build ing Building: 7,540 ft2 (approx. 3\% of Lot Size)

Lots 36 \& 37: General Contrac tor Servic es: $23,603 \mathrm{~m} 2$ lots $\rightarrow 708 \mathrm{~m} 2$ build ings Building: 7,621 ft2 (approx. 3\% for 2 Lots)

PHASE 2

Lots 1-34 (Lots are assumed to be consolidated when largerarea needed)

25\% Light Industria I Servic es:	$37,121 \mathrm{~m} 2$ lot $\rightarrow 1,856 \mathrm{~m} 2$ building
	Build ing: 20,000 ft2 (approx. 5\% of Lot Size)
15\% General Contractor Services:	22,272m2 lot \rightarrow 1,114m2 building
	Building: 12,000 ft2 (approx. 5\% of Lot Size)
10\%Automotive and Equipment Repa ir Shop: 14,850m2 lot $\rightarrow 743 \mathrm{~m} 2$ building	
	Build ing: 8,000 ft2 (approx. 5\% of Lot Size)
10\%Self-Service Storage Facilities:	14,850m2 lot $\rightarrow 743 \mathrm{~m} 2$ building
	Build ing: 8,000 ft2 (approx. 5\% of Lot Size)
10\% Equipment Rental Establishments	nts: $14,850 \mathrm{~m} 2$ lot $\rightarrow 743 \mathrm{~m} 2$ build ing
	Build ing: 8,000 ft2 (approx. 5\% of Lot Size)
10\% Major Utility Service:	14,850m2 lot $\rightarrow 743 \mathrm{~m} 2$ building
	Building: 8,000 ft2 (approx. 5\% of Lot Size)
10\% Building Supply Store:	14,850m2 lot $\rightarrow 743 \mathrm{~m} 2$ building
	Building: 8,000 ft2 (approx. 5\% of Lot Size)
5\% Agric ultural Industry:	$7,425 \mathrm{~m} 2$ lot $\rightarrow 371 \mathrm{~m} 2$ build ${ }^{\text {ing }}$
	Build ing: 4,000 ft2 (approx. 5\% of Lot Size)

5\% Sma ll Ma nufac turing Facilities:
$7,425 \mathrm{~m} 2$ lot $\rightarrow 371 \mathrm{~m} 2$ building Build ing: 4,000 ft2 (approx. 5\% of Lot Size)

The total building floor area is projected to occupy $88,302 \mathrm{ft} 2$ in total on the $2,103,680$ ft2 of total lot space (4.2\%).

It is important to note that the Institute of Transportation Engineers (ITE) Trip Generation Manual provides trip generation rates for several land use types, however much of data wascollected in large urban centres which generate theirown primary trips. In this case, Redwater has a population of only 2,200 and is signific antly lower than the U.S. cities with 100,000's to $1,000,000$'s of people for which the ITE trip generation rate is based on. This is especially true for land uses such as the sales and supply developments. The traffic is likely to come from existing residents in or around the Redwaterarea. Forthis reason, some of the trip generation ratesare reduced by 25% to 50%.

2.3 Trip Generation Determination

Trip Generation calculations are made asfollows:

The following table presents the estimated trip generation calculations. Peak Hour of Adjacent Street Traffic values are used for generation rates. All data in the following tables are taken from the $10^{\text {th }}$ Edition of Institute of Transportation Engineers Thip Generation Manual. Future development isestimated and based on the pattem of existing development.

In this site case, the land use projected forthe new development are not antic ipated to ha ve pass-by trips but only primary trips. Pass-by tripstend to occurformostly pure commercial developments.

TIA UPDATE/AMENDMENT

TABLE 2.3-1: TRIP GENERATION - Daily

$\mathrm{D}_{\&} \mathrm{~A}$

Major Utility Service	$\begin{aligned} & 170 \\ & \text { Utility } \end{aligned}$	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	100\%	0\%	13.24	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 40 \\ 40 \\ 0 \end{gathered}$	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 40 \\ 40 \\ 0 \end{gathered}$
Building Supply Store	812 Building Materials \& Lumber Store	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	100\%	0\%	18.05	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 54 \\ 54 \\ 0 \end{gathered}$	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 54 \\ 54 \\ 0 \\ \hline \end{gathered}$
Agricultural Industry	810 Tractor Supply Store	$\begin{gathered} 4,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	100\%	0\%	24.0**	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 36 \\ 36 \\ 0 \end{gathered}$	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{gathered} 36 \\ 36 \\ 0 \end{gathered}$
Manufacturing Industry	140 Manufacturing	$\begin{gathered} 4,000 \\ \mathrm{ft}^{2} \end{gathered}$	100\%	100\%	0\%	3.93	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$
TOTAL- Phase 2 Year 2045							312 / 312/0		312/312/0	
							624 / 624/0			
TOTAL							392 / 392-0		392 / 392-0	
							784/784/0			

*Note: A Daily Rate for this Land Use was not available in the ITE Manual. Therefore, the Peak Hour of Adjacent Street Traffic between 7-9am and 4-6pm were averaged and multiplied by 10 for the Daily Rate.
**Note: A Daily Rate forthis Land Use and the Peak Hour of Adjacent Street Traffic between 7-9am were not available in the ITE Manual. Therefore, the Peak Hour of Adjac ent Street Traffic between $4-6 \mathrm{pm}$ was multiplied by 10 for the Daily Rate.

PAULICHUK

TIA UPDATE/AMENDMENT

TABLE 2.3-2: TRIP GENERATION - Peak Hours

Land Use	Units		AM Peak Hour PM Peak Hour													
			$\begin{gathered} \text { g } \\ \hline 0 \end{gathered}$				I) Trips) Trips)	$\begin{array}{r} 0 \\ \text { (To } \\ \text { (Trima } \\ \text { (Pass- } \end{array}$	Trips) Trips)	gir			(T) (Prim (Pass	Tips) Trips)		Trips) Trips)
Automotive \& Equipment Repair Shop (ITE 942)	$\begin{gathered} 7,540 \\ \mathrm{ft}^{2} \end{gathered}$	50\%	2.25	100\%	0\%	66\%	$\begin{aligned} & \hline 6 \\ & \hline 6 \\ & \hline \end{aligned}$	34\%	$\begin{aligned} & \hline 3 \\ & \hline 3 \\ & 0 \\ & \hline \end{aligned}$	3.11	100\%	0\%	48\%	6 6 0	52\%	$\begin{array}{\|l\|} \hline 6 \\ \hline 6 \\ \hline \end{array}$
General Contractor Services (ITE 180)	$\begin{array}{\|l} 7,621 \\ \text { ft2 } \end{array}$	75\%	1.66	100\%	0\%	73\%	7 7 0	27\%	$\begin{aligned} & 3 \\ & 3 \\ & 0 \end{aligned}$	1.97	100\%	0\%	32\%	4 4 0	68\%	8 8 0
TOTAL- Phase 1 Year 2025						$\begin{gathered} 13 \\ 13 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & 1 \\ & 6 \\ & 6 \\ & 0 \end{aligned}$					$\begin{gathered} 10 \\ 10 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & 14 \\ & 14 \\ & 0 \end{aligned}$	
Light Industrial Services (ITE 110)	$\begin{gathered} 20,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	0.70	100\%	0\%	88\%	10 10 0	12\%	3 3 0	0.63	100\%	0\%	13\%	2 2 0	87\%	10 10 0
General Contractor Services (ITE 180)	$\begin{gathered} 12,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	1.66	100\%	0\%	73\%	$\begin{gathered} 11 \\ 11 \\ 0 \end{gathered}$	27\%	$\begin{aligned} & 4 \\ & 4 \\ & 0 \end{aligned}$	1.97	100\%	0\%	32\%	6 6 0	68\%	12 12 0
Automotive \& Equipment Repair Shop (ITE 942)	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	50\%	2.25	100\%	0\%	66\%	$\begin{aligned} & \hline 6 \\ & 6 \\ & 0 \end{aligned}$	34\%	$\begin{aligned} & \hline 3 \\ & 3 \\ & 0 \\ & \hline \end{aligned}$	3.11	100\%	0\%	48\%	6 6 0	52\%	7 7 0
Self-Service Storage Facilities (ITE 151)	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	100\%	0.10	100\%	0\%	60\%	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	40\%	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0.17	100\%	0\%	47\%	1 1 0	53\%	1 1 0
Equipment Rental Establishments (ITE 811)	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	0.99*	100\%	0\%	72\%	$\begin{aligned} & 5 \\ & 5 \\ & 0 \end{aligned}$	28\%	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	0.99	100\%	0\%	28\%	2 2 0	72\%	$\begin{aligned} & 5 \\ & 5 \\ & 0 \end{aligned}$
Major Utility Service (ITE 170)	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	2.31	100\%	0\%	80\%	11 11 0	20\%	4 4 0	2.27	100\%	0\%	20\%	3 3 0	80\%	11 11 0

		g				Peak							Peak			
Land Use	Units		$\begin{aligned} & \text { I! } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { 릉o } \\ & \text { Nj } \\ & \text { di jo } \end{aligned}$			Tips) Trips)			$\begin{aligned} & \text { g } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { 즟 o } \\ & \text { 틸 } \\ & \text { jo } \end{aligned}$	$\begin{aligned} & \text { 高。 } \\ & \dot{W} \\ & \text { di } \end{aligned}$)		I) Trips) Trips)
Building Supply Store (ITE 812)	$\begin{gathered} 8,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	1.57	100\%	0\%	63\%	$\begin{aligned} & \hline 6 \\ & 6 \\ & 0 \end{aligned}$	37\%	$\begin{aligned} & \hline 4 \\ & 4 \\ & 0 \end{aligned}$	2.06	100\%	0\%	47\%	$\begin{aligned} & \hline 6 \\ & 6 \\ & 0 \end{aligned}$	53\%	$\begin{aligned} & \hline 7 \\ & 7 \\ & 0 \\ & \hline \end{aligned}$
Agric ultural Industry (ITE 810)	$\begin{gathered} 4,000 \\ \mathrm{ft}^{2} \end{gathered}$	75\%	1.40*	100\%	0\%	53\%	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	47\%	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	1.40	100\%	0\%	47\%	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	53\%	3 3 0
Manufac turing Industry (ITE 140)	$\begin{gathered} 4,000 \\ \mathrm{ft}^{2} \end{gathered}$	100\%	0.62	100\%	0\%	77\%	$\begin{aligned} & 2 \\ & 2 \\ & 0 \end{aligned}$	23\%	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	0.67	100\%	0\%	31\%	1 1 0	69\%	$\begin{aligned} & 2 \\ & 2 \\ & 0 \end{aligned}$
TOTAL- Phase 2 Year 2045						$\begin{array}{cc}55 & 23 \\ 55 & 23 \\ 0 & 0\end{array}$							$\begin{gathered} 29 \\ 29 \\ 0 \end{gathered}$		$\begin{gathered} 58 \\ 58 \\ 08 \end{gathered}$	
Total						$\begin{aligned} & 68 \\ & 68 \end{aligned}$									720	
						9797							111			

*Note: Using the same rate as Peak Hour of Adjac ent Street Traffic between 4-6 pm since no Peak Hour of Adjacent Street Traffic between 7 - 9am rate available in ITE Manual.

IRAFFC IMPACTASSESSMENT

2.4 Tip Distribution

The anticipated trip distribution for the proposed developmnet will first occur from one access point at the north west comer of the property at the junction of $54^{\text {th }}$ Avenue \& $44^{\text {th }}$ Street for Phase 1. The anticipated trip distribution percentages for Phase 1 is shown below.

Figure 2.4.1 - Phase1 Only - 2025

In Phase 1, the traffic to the north along 44 ${ }^{\text {th }}$ Street from the development access is anticipated to be low as existing development to the north is low and the local roadway is not as developed as Highway 829 to the east. Traffic will likely utilize existing paved roadways and highways to the south. However, traffic will likely use $54^{\text {th }}$ Avenue to the west, asthis route is a shorterdistance to the Redwaterdowntown area. This traffic is not expected to be large or heavy vehicles, just passenger vehic les running emandsorgoing for lunch.

IRAFFC IMPACTASSESSMENT

For Phase 2, slightly more traffic may go north from the north west comer of the development property. Most traffic still proceeds south to the junction of Highway $38 \&$ Highway 644. Due to the location of the Alberta Industrial Heartland area, much of the proposed development is anticipated to service this area and its future growth.

A new access will be made to the south existing industrial park at 47th Street which connects to Highway 644 (48 ${ }^{\text {th }}$ Avenue). A portion of traffic from this intersection is antic ipated to go east on Highway 644 and then north on Highway 829. The traffic on the west leg of this intersection is split 50% to the west and 50% to the south.

Figure 2.4.2 - Phase 1 \& 2 - Year 2030 \& 2040

$\mathrm{D}_{\text {\& }}$PAULICHUK

IRAFFC IMPACTASSESSMENT

2.5 New Development Traffic

The detailed breakdown of the traffic for Development trips are shown below.

Figure 2.5.1- NEW DEVELOPMENTTRIPS- Phase 1, Year 2025

$\mathrm{D}_{\&}$ A PAULICHUK

IRAFFC IMPACTASSESSMENT

Fiqure 2.5.2 - NEW DEVELOPMENTTRIPS - Phase 1 \& 2 (50\%), Year 2035

IRAFFC IMPACTASSESSMENT

Figure 2.5.2 - NEW DEVELOPMENTTRIPS-Phase 1 \& 2 (100\%), Year 2045

IRAFFC IMPACTASSESSMENT

3. EXISIING CONDIIONS

3.1 Physic al Properties - Hwy. 38:10 \& Hwy. 644:02

Highway 38:10 traverses between the Hwy. 28 to Hwy. 644:02/Hwy. 38:10.

Hwy. 38:10 \& Hwy. 644:02 are classified as a Level 3 roadways in accordance with Alberta Transportation's "Provincial Highway Service Classific ation System". Level 3 roadways typic ally camy traffic from major generators such as communities and/or resource and developments but with overall shorter travel distances. These roadways provide the connection between Level 4 and Level 2 roadways, and generally serve traffic of an intra regional or inter county nature.

The intersection of Hwy. 38:10/Hwy. 644:02/44 ${ }^{\text {th }}$ Street and Hwy. 38:10 exists at a p proxima tely km 3.38.

Hwy. 38:10 traverses through a right angle from the west to the south.

The intersection is with a flat vertical sag curve.

Available sight distance is $>500 \mathrm{~m}$ in all directions.

IRAFFC IMPACTASSESSMENT

3.2 Traffic Properties - Hwy. 38:10 \& Hwy. 644:02

Existing Alberta Transportation intersectional traffic count locations are shown in the map below:

The AT website http://www.transportation.alberta.ca/mapping/ has traffic counts available that are relevant for comparison purposes for this assessment. There is a specific traffic count available for the intersection of Hwy. 38:10 and Hwy. 644:02. Details are shown below.

Table-3.2a: 2019 AADT from Alberta Highways Traffic Volume History

| Intersection Leg | 2019 AADT
 38:10 West | 2019 AADT
 38:10 South | 2019 AADT
 644:02 East | 2019 AADT
 4t Street North |
| :---: | :---: | :---: | :---: | :---: |$|$

Table-3.2b: 2019 AADT from Alberta Highways Traffic Volume History

Intersection Leg	2019 AADT	2019 AADT
$644: 02$ West	38:10 South	
844 E of Redwater (100590)	1140	1080

Reference No.: 997120
Intersection of:
$38 \& 644$ AT REDWATER

3.3 Site Obsenvations - Hwy. 38:10 \& Hwy. 644:02

The details of the intersection site a re a s follows:

Highway 38:10, Hwy. 644:02 \& 44 ${ }^{\text {th }}$ Street

- Highway $38: 10$ is two-laned and is paved. Posted Speed is 50 kph . The west leg of the Hwy. 38:10 was constructed as an urban cross section with curb and gutter, where the south leg was constructed as a rural cross section with $4: 1$ sideslopes a nd ditches. Steel pole street lighting exists along both west \& south legs of Hwy. 38:10.
- Highway 644:02 is two-laned and paved. It has a posted speed of 70 kph at the east limit of the exiting industrial subdivision, east of 47th Street. The posted speed reduces to 50 kph just east of $46^{\text {th }}$ Avenue. Steel pole street lighting exists along Hwy. 644:02.
- $44^{\text {th }}$ Street is two-laned and is paved. Posted Speed is 50 kph . There are no painted lines on the road. Street lighting mounted on the wood power poles exists a long $44^{\text {th }}$ Street.
- For intersection treatment, there is only an exclusive right tum lane on Hwy. 38:10 from EB to SB. This la ne also a llows fora very short left tum bypa ss for EB tra ffic. Tum la ne is a p proxima tely 100 m with 50 m ta per.
- Stop conditions exist for NB a nd SB directions.

Some photos from this site are shown below:

Viewing east on Hwy. 38 West towards the intersection with Hwy. 644/44th Street. Intersection has exclusive right tum la ne for tuming to the south.

IRAFFC IMPACTASSESSMENT

Hwy. 38:10 So uth - Viewing North at Hwy. 644/44th Street intersection.

$\mathrm{D}_{\&} \mathrm{~A}$ PAULICHUK CONSULTING LTD.

IRAFFC IMPACTASSESSMENT

3.4 Highway Traffic Projections- Hwy. 38:10, Hwy. 644:02, Local Roads

The following historical traffic data for Highway $38: 10$ is available from the Alberta Transportation's website for the west leg of the Hwy. 38:10 and Hwy. 644:02 intersection and indicatesa growth of 0.09\% from 1998 to 2019 (21 years), 0.10% from 2004 to 2019 (15 years), -0.06% from 2009 to 2019 (10 years) and -4.38% from 2014 to 2019 (5 years).

Historical Traffic Volumes - Hwy. 38:10, W. of Hwy. 644

Year	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
AADT	$\mathbf{3 3 5 0}$	$\mathbf{2 8 8 0}$	$\mathbf{2 9 7 0}$	$\mathbf{2 9 2 0}$	$\mathbf{3 1 4 0}$	$\mathbf{3 4 3 0}$	$\mathbf{3 4 7 0}$	$\mathbf{3 3 1 0}$	$\mathbf{3 5 6 0}$	$\mathbf{3 5 0 0}$	$\mathbf{2 7 1 0}$	$\mathbf{2 7 1 0}$

Year	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
AADT	$\mathbf{2 6 6 0}$	$\mathbf{2 6 6 0}$	$\mathbf{2 7 1 0}$	$\mathbf{2 8 9 0}$	$\mathbf{2 9 7 0}$	$\mathbf{2 7 3 0}$	$\mathbf{2 6 7 0}$	$\mathbf{2 7 3 0}$	$\mathbf{2 8 7 0}$	$\mathbf{3 1 1 0}$

Using the above data, a growth rate of 1.0% will be used for used for Hwy. 38:10 West non-compounded a nnually.

The following historical traffic data is also available from the Alberta Transportation's website for the south leg of the Hwy. 38:10 a nd Hwy. 644:02 intersection and indicates a growth of 0.57% from 1998 to 2019 (21 years), 0.52% from 2004 to 2019 (15 years), -0.15% from 2009 to 2019 (10 years) and -3.47% from 2014 to 2019 (5 years).

Historical Traffic Volumes - Hwy. 38:10, S. of Hwy. 644

Year	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
AADT	$\mathbf{2 2 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 8 9 0}$	$\mathbf{1 8 2 0}$	$\mathbf{1 9 6 0}$	$\mathbf{2 2 9 0}$	$\mathbf{2 3 6 0}$	$\mathbf{2 2 6 0}$	$\mathbf{2 5 0 0}$	$\mathbf{2 4 6 0}$	$\mathbf{1 9 5 0}$	$\mathbf{1 9 5 0}$

Year	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
AADT	$\mathbf{1 7 4 0}$	$\mathbf{1 7 4 0}$	$\mathbf{1 7 7 0}$	$\mathbf{1 8 9 0}$	$\mathbf{1 9 4 0}$	$\mathbf{1 8 7 0}$	$\mathbf{1 8 1 0}$	$\mathbf{1 8 5 0}$	$\mathbf{1 9 5 0}$	$\mathbf{2 1 1 0}$

Using the above data, a growth rate of 1.0% will be used for used for Hwy. 38:10 South non-compounded a nnually.

The following historical traffic data is also available from the Alberta Transportation's website for the east leg of the Hwy. 38:10 and Hwy. 644:02 intersection and indic ates a growth of 0.85% from 1998 to 2019 (21 years), 0.99\% from 2004 to 2019 (15 years), 0.35% from 2009 to 2019 (10 years) and -5.41% from 2014 to 2019 (5 years).

Historical Traffic Volumes - Hwy. 644:02, E. of Hwy. 38

Year	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
AADT	$\mathbf{1 8 0 0}$	$\mathbf{1 7 2 0}$	$\mathbf{2 4 4 0}$	$\mathbf{2 4 4 0}$	$\mathbf{2 3 4 0}$	$\mathbf{2 3 6 0}$	$\mathbf{2 3 4 0}$	$\mathbf{1 7 8 0}$	$\mathbf{1 7 8 0}$			

Year	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
AADT	$\mathbf{1 5 1 0}$	$\mathbf{1 5 1 0}$	$\mathbf{1 5 6 0}$	$\mathbf{1 6 6 0}$	$\mathbf{1 7 1 0}$	$\mathbf{1 5 5 0}$	$\mathbf{1 5 5 0}$	$\mathbf{1 5 7 0}$	$\mathbf{1 6 0 0}$	$\mathbf{1 6 8 0}$

Using the above data, a growth rate of 1.0% will be used for used for Hwy. 644:02 noncompounded annually.

IRAFFC IMPACTASSESSMENT

The following historical traffic data is also available from the Alberta Transportation's website for the north leg of the Hwy. 38:10 a nd Hwy. 644:02 intersection a nd indic ates a growth of 0.20% from 2002 to 2019 (17 years), 0.85\% from 2004 to 2019 (15 years), -1.62% from 2009 to 2019 (10 years) a nd -2.54\% from 2014 to 2019 (5 years).

Historical Traffic Volumes - 44 ${ }^{\text {th }}$ Street, N. of Hwy. 38

Year	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
AADT	$\mathbf{6 4 0}$	$\mathbf{7 4 0}$	$\mathbf{8 0 0}$	$\mathbf{7 8 0}$	$\mathbf{8 6 0}$	$\mathbf{6 8 0}$	$\mathbf{7 1 0}$	$\mathbf{6 7 0}$	$\mathbf{7 4 0}$	$\mathbf{7 4 0}$	$\mathbf{6 2 0}$	$\mathbf{6 2 0}$

Year	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
AADT	$\mathbf{6 0 0}$	$\mathbf{5 5 0}$	$\mathbf{5 5 0}$	$\mathbf{5 5 0}$	$\mathbf{5 6 0}$	$\mathbf{6 0 0}$

Using the above data, a growth rate of 1.0% will be used for used for $44^{\text {th }}$ Street noncompounded annually.

3.5 Other Background Traffic Generation

There are three additional areas that new traffic can generate in the future along 44th Street and Hwy. 644:02 outside the development a rea a sollows:

The traffic generation provided in the Traffic Impact Assessment for the Alluvium Residential Subdivision (SE 30-57-21-W4) prepared by the WSP Group in J uly 16, 2015, is shown below:

LEGEND

[^2]NOT TO SCALE

Figure 7. Trip Assignment

IRAFFC IMPACTASSESSMENT

Figure 3.5.1 - AWUVIUM SUBDIVISION TRIPS-100\%, Year 2025

IRAFFC IMPACTASSESSMENT

For the R-6 High Density area, the following is estimated for future traffic generation:

Daily:	96 units $\times 5.44$ trips/day	$=522$ trips ($50 \% \ln , 50 \%$ Out)
AM Peak Hour:	96 units $\times 0.36$ trips/hour	$=35 \operatorname{trips~(26\% ~In,~} 74 \%$ Out)
PM Peak Hour:	96 units $\times 0.44$ trips/hour	$=42$ trips $(61 \% \ln , 39 \%$ Out)

The distribution of this traffic is estimated to travel 40% to the north and 60% to the south, fully developed in 10 years.

For the M-1 Industrial area, a truck fill water station is already located at this site. No further development is a ntic ipated.

Fiqure 3.5.2 - R-6 HIGH DENSTTY AREAVISION TRIPS- 100\%, Year 2025

IRAFFC IMPACTASSESSMENT

For the M-2 Industrial vacant lots, following is estimated for future traffic generation:

| Daily: | $8,000 \mathrm{ft} 2 \times 75 \% \times 4.96$ trips/day | $=30$ trips ($50 \% \mathrm{In}, 50 \%$ O ut) |
| :--- | :--- | :--- | :--- |
| AM Peak Hour: | $8,000 \mathrm{ft} 2 \times 75 \% \times 0.70$ trips $/$ hour | $=5$ trips ($88 \% \mathrm{ln}, 12 \%$ Out) |
| PM Peak Hour: | $8,000 \mathrm{ft} 2 \times 75 \% \times 0.63$ trips/hour | $=4$ trips ($13 \% \mathrm{In}, 87 \%$ O ut) |

This traffic is anticipated to follow the same distribution pattems as the proposed development.

Figure 3.5.3- M-2 INDUSIRIALVACANTLOTTRIPS-100\%, Year 2025

IRAFFC IMPACTASSESSMENT

3.6 Total Background Traffic

The tuming movements for all background traffic + future traffic from other nearby developments in the area are shown below:

Fiqure 3.6.1-TOTALBACKGROUND TRIPS- Phase 1, Year 2025

$\mathrm{D}_{\mathrm{d}_{\mathrm{A}}}$
PAULICHUK

IRAFFC IMPACTASSESSMENT

Figure 3.6.2-TOTALBACKGROUND TRIPS- Phase $1 \& 2$ (50\%), Year 2035

$\mathrm{D}_{\text {\& }}$ PAULICHUK

IRAFFC IMPACTASSESSMENT

Figure 3.6.3-TOTAL BACKGROUND TRIPS-Phase $1 \& 2(100 \%)$, Year 2045

$\mathrm{D}_{{ }_{\mathrm{d}}} \mathrm{A}$ PAULICHUK

For the $44^{\text {th }}$ Street and $54^{\text {th }}$ Avenue intersection existing traffic tuming movements, the values from the TIA prepared by McElhanney was used. Daily volumes were calculated using the average of the AM and PM Peak Hours and multiplied by 10.

For the Hwy. 644:02 \& 54 ${ }^{\text {th }}$ Street existing traffic tuming movements, the following was used to estimate traffic:

Daily:
$43,760 \mathrm{ft} 2 \times 75 \% \times 4.96 \mathrm{trips} /$ day $\quad=164 \mathrm{trips}(50 \% \ln , 50 \%$ O ut)
AM Peak Hour: $43,760 \mathrm{ft} 2 \times 75 \% \times 0.70$ trips/hour $=23$ trips ($88 \% \mathrm{ln}, 12 \%$ O ut) PM Peak Hour: $43,760 \mathrm{ft} 2 \times 75 \% \times 0.63$ trips/hour $=21$ trips ($13 \% \mathrm{In}, 87 \%$ O ut)

A distribution split of 70% to and from the west, and 30% to and from the east was assumed to estimate the tuming movement diagram.

3.7 Combined Traffic Projections

The following tablesshow the estimated combined traffic volumes at the intersection of Highway 38:10, Highway 644:02 a nd 44th Street.

Combined Traffic Forecast, Daily Volumes					
	Hwy. 38:10	Hwy. 38:10	Hwy. 644:02	$44^{\text {th }}$ Street	
Year	West Leg	South Leg	East Leg	North Leg	
Combined	Combined	Combined	Combined		
2025	3106	2321	2040	1209	
2035	3474	2601	2351	1350	
2045	3833	2874	2627	1524	

Combined Traffic Forecast, Peak Hour Volumes

	Hwy. 38:10 West Leg Combined am $/ \mathrm{pm}$	Hwy. 38:10 South Leg Combined am $/ \mathrm{pm}$	Hwy. 644:02 East Leg Combined am $/ \mathrm{pm}$	44 th Street North Leg Combined am $/ \mathrm{pm}$
2025	$317 / 321$	$230 / 257$	$210 / 225$	$87 / 115$
2035	$355 / 363$	$261 / 291$	$245 / 265$	$101 / 131$
2045	$397 / 402$	$292 / 323$	$279 / 299$	$120 / 154$

The Combined AADTTuming Movements for Years 2025, 2035 and 2045 are shown below:

IRAFFC IMPACTASSESSMENT

Figure 3.7.1-COMBINED TRIPS - Phase 1, Year 2025

$\mathrm{D}_{\&}$ PAULICHUK

IRAFFC IMPACTASSESSMENT

REDWATER INDUSTRIAL SUBDIVISION 44th Street, Hwy. 38:10 \& Hwy. 644 SW 29-57-21-W4M Town of Redwater

Figure 3.7.2-COMBINED TRIPS-Phase 1 \& 2 (50\%), Year 2035

$\mathrm{D}_{\mathrm{d}_{\mathrm{A}}}$ PAULICHUK

IRAFFC IMPACTASSESSMENT

Fiqure 3.7.3 - COMBINED TRIPS - Phase 1 \& 2 (100\%), Year 2045

$\mathrm{D}_{\mathrm{d}_{\mathrm{A}}}$ PAULICHUK

4. TRAFFIC ANALYSIS-Hwr. $38: 10$, Hwr. $644: 02 \& 44$ tit Sireet

4.1 Design Speed

The posted speed on Highway 38:10 and $44^{\text {th }}$ Street at this location is $50 \mathrm{~km} / \mathrm{hr}$ and therefore a design speed of $60 \mathrm{~km} / \mathrm{h}$ will be used for the analysis and the results assessed upon this.

The posted speed on Highway 644:02 at this location is $50 \mathrm{~km} / \mathrm{hr}$ up to $46^{\text {th }}$ Street and $70 \mathrm{~km} / \mathrm{hr}$ east of 46^{th} Street. A design speed of $60 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{hr}$ respectively will be used for the analysis and the results a ssessed upon this.

4.2 Determination Based on Traffic Volume Wanrant Chart

The 2025, 2035 and 2045 AADT values for the Hwy. 38:10, Hwy. 644:02 and 44th Street intersection indic atesfrom referencing Figure D-7.4, "Traffic Volume Warrant Chart for At-Grade Intersection Treatment on Two-Lane Rural Highways (Design Speeds $100 / 110 / 120 \mathrm{~km} / \mathrm{h}$)" (using the west \& south legs), that a Detailed Analysis is required.

4.3 Detailed Analysis

Right Tum

In accordance with Alberta Transportation's "Highway Geometric Design Guide" (Section D.7.7), an exclusive right tum lane is waranted on an undivided highway when all three of the following conditions are met:

- Main (or though) road AADT $\geq 1,800$
- Intersecting road AADT 900
- Right tum daily traffic volume ≥ 360 for the movement in question.

The following table indicates the status of these requirements for right tums from Highway 38:10 west to Highway 38:10 south.

Table 4.3.1 - Right Turn Warrant - East Bound

Condition	Existing Year 2021	Stage 1 Year 2025	 Stage 2 (50\%) Year 2035	 Stage 2 (100\%) Year 2045
	(Condition Met)	(Condition Met)	(Condition Met)	(Condition Met)
Main Road (Hwy. 38:10 W)	2761	3106	3474	3833
AADT ≥ 1800	(Yes)	(Yes)	(Yes)	(Yes)
Intersecting Road (Hwy. 38:10 S)	1987	2321	2601	2874
AADT \geq 900	(Yes)	(Yes)	(Yes)	(Yes)
Right turn daily traffic $\geq \mathbf{3 6 0}$	621	654	716	776
	(Yes)	(Yes)	(Yes)	(Yes)
For movement in question	(Yes)	(Yes)	(Yes)	(Yes)

Based on the projected volumes, an exclusive right tum lane is required for the eastbound direction for the next 24 years with the existing traffic in 2021 and added traffic from the proposed development.

The following table indicates the status of these requirements for right tums from Highway 644:02 west to $44^{\text {th }}$ Street north.

Table 4.3.2 - Right Turn Warrant - West Bound

Condition	Existing Year 2021	Stage 1 Year 2025	 Stage 2 (50\%) Year 2035	 Stage 2 (100\%) Year 2045
	(Condition Met)	(Condition Met)	(Condition Met)	(Condition Met)
Main Road (Hwy. 644:02 E)	1814	2040	2351	2627
AADT $\geq \mathbf{1 8 0 0}$	$(\mathrm{Yes)}$	(Yes)	(Yes)	(Yes)
Intersecting Road (44 ${ }^{\text {th }}$ Street N)	632	1209	1350	1524
AADT $\geq \mathbf{9 0 0}$	(No)	(Yes)	(Yes)	(Yes)
Right turn daily traffic $\geq \mathbf{3 6 0}$	51	115	128	144
	(No)	(No)	(No)	(No)
For movement in question	(No)	(No)	(No)	(No)

Based on the projected volumes, an exclusive right tum lane is not required for the westbound direction for the next 24 years with the existing traffic in 2021 and added traffic from the proposed development.

Left Tum

Eastbound

The Highway Geometric Design Guide Section D.7.6 gives graphical guidelines for determining left tum warrant. The graphs use peak ($100^{\text {th }}$ highest) hour volumes and factor in percent tuming and design speed to identify the required treatment for the intersection. The following table shows the treatments needed for current and projected traffic volumes.

Table 4.3.3 - Required Treatment Type - Hwy. 38 to $44^{\text {th }}$ Street EB, AM PEAK

	Existing Year 2021	Stage 1 Year 2025	 Stage 2 (50\%) Year 2035	 tage 2 (100\%) Year 2045
Peak 100th Hour - AM Peak Hr				
\% Left Turns	3.1%	7.5%	8.5%	15.0%
$\mathbf{V}_{\mathbf{a}}=$ Advancing Volume (VPH)	131	146	165	160
$\mathbf{V}_{\mathbf{0}}=$ Opposing Volume (VPH)	94	102	118	154
VI = Left turning Volume (VPH)	4	11	14	24
Design Speed	$60 \mathrm{~km} / \mathrm{hr}$			
Required Treatment Type	Type II	Type II	Type II	Type II

Table 4.3.4-Required Treatment Type - Hwy. 38 to $44^{\text {th }}$ Street EB, PM PEAK

For the Eastbound direction of the intersection, a Type II intersection treatment is wa ranted for the next 24 years as shown below:

Westbound

	Existing Year 2021	Stage 1 Year 2025	Stage 1 \& Stage $2(50 \%)$ Year 2035	Stage $1 \&$ Stage $2(100 \%)$ Year 2045
Peak 100th Hour - AM Peak Hr				
\% Left Turns	36.2\%	34.3\%	33.9\%	34.1\%
V_{a} = Advancing Volume (VPH)	94	102	118	132
$\mathrm{V}_{0}=$ Opposing Volume (VPH)	131	146	165	188
VI = Left turning Volume (VPH)	34	35	40	45
Design Speed	$60 \mathrm{~km} / \mathrm{hr}$			
Required Treatment Type	Type II w/ Exclusive Rt Turn Lane	```Type II w/ Exclusive Rt Turn Lane```	Type II w/ Exclusive Rt Turn Lane	Type II w/ Exclusive Rt Turn Lane

Table 4.3.6 - Required Treatment Type - Hwy. 38 to $44^{\text {th }}$ Street WB, PM PEAK

For the Westbound direction of the intersection, a Type II intersection treatment is wa rranted for the next 24 years as shown below:

4.4 Intersectional Sight Distance

In accordance with section D.4, "Sight Distances at Intersections", the sight distance for left tuming vehic les from the approach, without interfering with vehicles nearing the intersection, is used for determination of minimum sight distance requirements. Using Fig. D-4.2.2.2 below, the required sight distances for various vehicle types with an $80 \mathrm{~km} / \mathrm{hr}$ design speed are as follows:

Vehicle Type	
	Required Sight Distance $-60 \mathrm{~km} / \mathrm{hr}$.
Passenger Vehicle (P)	112 m
Single Unit or Bus (SU)	178 m
Semi-Trailer Combination (WB15)	232 m
Semi-Trailer Combination (WB21, WB23,	305 m
WB28, WB33)	

The site distance is greater than 310 metres in both directions on Hwy. 38:10/Hwy. 644:02 at the Hwy. 38/44 th Street intersection.

4.5 Illumination \& Signalization

Illumination and signalization warrants were reviewed. The results are summarized in the Table below:

Location	Year	Illumination Warrant Score	Illumination Warrant Met? (Min. 120)	Signalization Warrant Score	Signalization Warrant Met?
Hwy. 38:10 $\boldsymbol{\&}$ Hwy. 644:02	2021 1% Growth Rate	106	No		No
Hwy. 38:10 $\boldsymbol{\&}$ Hwy. 644:02	2025 1% Growth Rate	136	Yes Partial	No	
Hwy. 38:10 $\boldsymbol{\&}$ Hwy. 644:02	2045 1% Growth Rate	136	Yes Partial		No
Hwy. 38:10 $\boldsymbol{\&}$ Hwy. $\mathbf{6 4 4 : 0 2}$	2045 2% Growth Rate	136	Yes Partial	7	No

PaULIChuK

IRAFFC IMPACTASSESSMENT

Partial illumination is warranted for the intersection in 2025. Since full urban lighting exists for all four legs of the intersection, no further improvements a re required.

A Transportation of Canada Signa lization Warrant Analysis was performed using the Peak Hour traffic data with 2% growth rate for Year 2045. The analysis indic ated that signals are not wa rranted at the intersection forthe next 24 years as the tuming traffic volumes are too low.

IRAFFC IMPACTASSESSMENT

4.6 Capacity Analysis

A capacity a nalysis was performed for the intersection for the 100th highest hour for the AM \& PM Peak Hours for Years 2021, 2025, 2035 and 2045. The traffic analysis was completed using Synchro 10 software based on HCM 2000 and HCM 2010 methodology. A saturation flow of 1700 vpl was used in this a nalysis. See the table below for the results. Results below are reported in HCM 2000 methodology.

Hwy. 38:10, Hwy. 644:02 \& 44 ${ }^{\text {th }}$ Street

With Development in Years 2025, 2035 \& 2045

IRAFFC IMPACTASSESSMENT

REDWA TER INDUSTRIAL SUBDIVISION

			Hwy. 38:10 South Leg	Hwy. 38:10 West Leg		Hwy. 644:02	$44^{\text {th }}$ Street
	TIME PERIOD	PARAMETERS	NB All Turns	EB Left Turn		WB All Turns	$\begin{gathered} \text { SB } \\ \text { All Turns } \end{gathered}$
		LOS	B	A	A	B	B
	M	Delay (s)	12.8	1.6	0.0	2.8	10.2
	Peak	v/c Ratio	0.27	0.01	0.02	0.03	0.08
		Queue 95th	8.6	0.3	0.0	0.7	2.0
		LOS	B	A	A	A	B
	AM	Delay (s)	12.7	1.1	0.0	2.7	10.4
	Peak	v/c Ratio	0.24	0.01	0.04	0.03	0.08
Ye		Queue 95th	7.5	0.2	0.0	0.7	2.2
2035		LOS	B	A	A	B	B
	PM	Delay (s)	14.1	1.6	0.0	2.9	10.6
	Peak	v/c Ratio	0.32	0.01	0.03	0.03	0.10
		Queue 95th	11.0	0.4	0.0	0.9	2.6
		LOS	B	A	A	A	B
	AM	Delay (s)	13.7	1.3	0.0	2.7	10.7
	Peak	v/c Ratio	0.29	0.01	0.04	0.03	0.10
Year		Queue 95th	9.4	0.3	0.0	0.8	2.7
2045		LOS	C	A	A	A	B
	PM	Delay (s)	15.7	1.7	0.0	2.9	11.1
	Peak	v/c Ratio	0.38	0.02	0.03	0.04	0.12
		Queue 95th	14.1	0.4	0.0	1.0	3.3

Using 2.0\% Growth Rate non-compounded per year

					LOS	B
Year	AM	Delay (s)	13.7	1.3	0.0	2.7
2045	Peak	v/c Ratio	0.29	0.01	0.04	0.03
		Queue 95th	9.4	0.3	0.0	0.8

IRAFFC IMPACTASSESSMENT

		Hwy. $38: 10$ South	Hwy. 38:10 West Leg		Hwy. 644:02	$44^{\text {th }}$ Street
TIME PERIOD	PARAMETERS	NB All Turns	EB Left Turn		WB All Turns	SB All Turns
	LOS	C	A	A	A	B
PM	Delay (s)	20.2	1.6	0.0	3.0	11.8
Peak	v/c Ratio	0.51	0.02	0.03	0.05	0.15
	Queue 95th	22.9	0.5	0.0	1.2	4.3

The Roadway Capacity Analysis indicates that the intersection will have sufficient capacity forthe next 24 years with the proposed added development traffic with the LOS reaching only C on one leg of the intersection. Further to this, when the growth rate forall four legs of the intersection is increased from 1.0\% growth per yearto 2.0\% growth per year, the capacity a nalysis still ind ic a tes that the intersection mainta ins its capacity for the next 24 years. See Appendices for detailed reports.

LEVEL OF SERVICE (LOS) CRITERIA

4.7 Analysis Summary

A detailed analysis was completed forthis report at the intersection of Highway 38:10, Highway 644:02 and 44th Street in the Town of Redwater. The results are as follows:

- Using Alberta Transportation Design Guidelines, the intersection treatment analysis indic ated that a Type llc intersection treatment is wananted now in 2021 and was warmanted many years before this upon review of past traffic volumes. A Type llc intersection treatment requirement is maintained for the next 24 years, with the proposed development fully utilized in 2045.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has sufficient capacity to support traffic movements to a Level of Service of C for the next 24 years, with the proposed development fully utilized in 2045.
- Partial illumination is warranted in 2025, howeverno action is required since full urban street lighting exists on all four legs of the intersection.
- Traffic Signals at this intersection are not wamanted for the next 24 years. Hence, a roundabout is also not a consideration for the next 24 years at this location.
- Sight distance for Design Vehic les of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 50 kph is sufficient.
- A Pedestrian Crossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this a rea and are assumed to be zero to very low.

This intersection is within the Town of Redwater and thus an urban area. The posted speed is only 50 kph and the capacity analysis indic ates that the longest delay times in 24 years are $14-16$ seconds for a left tum/straight thru movement from the Hwy. 38:10 South Leg. The delays and queue lengths are minimal and the intersection should operate efficiently for 24 years and more with the present intersection treatment. There are no operational issues presently at the site.

There is an issue of limited right-of-way at this intersection. The highway was originally constructed within a basic 22.86 m (75 foot) right-of-way. There is additional width available in the SW quadrant only. This 22.86 m right-of-way will not allow for a full Type II intersection treatment as +40 m is required for a desired rural cross-section (1 side: $3.7 \mathrm{~m}+3.5 \mathrm{~m}+2.3 \mathrm{~m}+5 \mathrm{~m} \mathrm{SS}+3.5 \mathrm{~m}$ Ditch +3 mBS). The existing right-of-way only allows for a modified intersection width improvement using a 0.5 m shoulder width and $3: 1$ sideslopes, if only in a fill situation. Fortunately, at this location, there are no backslopes and the road is mainly in a fill situation. This would allow for the addition lane being added with the suggested modifications. See below.

IRAFFC IMPACTASSESSMENT

$\mathrm{D}_{\&}$ PAULICHUK

It is also recommended that $15: 1$ tapers be utilized in lieu of $25: 1$ tapers since this location is within an established urban a rea with a 50 kph posted speed. This will also help avoid tapers from going through approaches and other intersections, since there are numerous approaches in this area. The $40: 1$ and $25: 1$ taper rates are shown on ATs design guidelines are mainly intended for rural situations, as there is often significantly speed reductions due to tuming movements. These speed reductions are usually from a speed of $100 \mathrm{~km} / \mathrm{h}$. For an established urban location, traffic should be traveling at the

HIGHWAY DESIGN SPEED $(\mathrm{km} / \mathrm{h})$	LENGTH AND TAPER RATIO "T" OF RIGHT TURN TAPER (m)
50	87.5 ot $25: 1$
60	87.5 at $25: 1$
70	87.5 ot $25: 1$
80	87.5 at $25: 1$
90	87.5 ot $25: 1$
100	87.5 at $25: 1$
10	87.5 ot $25: 1$
120	140.0 at $40: 1$
130	140.0 at $40: 1$

It is likely that additional right-of-way at this intersection will not be immediately attainable, and therefore, a modified intersection treatment as described above should suffice forproposed development in the area forthe next 24 years.

IRAFFC IMPACTASSESSMENT

In summary, a Type Ilc intersection treatment is warranted in Year 2021 but with modifications to the standard type IIc treatment that include 0.5 m wide shoulders, $3: 1$ sideslopes and $15: 1$ ta pers. Improvements are not required in the SW quadrant.

Since other developments a re presently being constructed in the area, cost sharing of this improvement is likely to be considered. The ratio of estimated existing and development traffic volumes using this intersection from 2021 to 2045 is shown below. This will change as more development is proposed.

IRAFFC IMPACTASSESSMENT

5. TRAFFIC ANALYSIS-Hwr. $644: 02 \& 47$ th Sireet

5.1 Design Speed

The posted speed on Highway 644:02 at this location is $50 \mathrm{~km} / \mathrm{hr}$ up to $46^{\text {th }}$ Street and $70 \mathrm{~km} / \mathrm{hr}$ east of $46^{\text {th }}$ Street. A design speed of $60 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{hr}$ respectively will be used for the analysis and the results a ssessed upon this.

5.2 Determination Based on Traffic Volume Wanant Chart

The 2025, 2035 and 2045 AADT values for the Hwy. 644:02 and 47th Street intersection indic ates from referencing Figure D-7.4, "Traffic Volume Warrant Chart for At-Grade Intersection Treatment on Two-Lane Rural Highways (Design Speeds 100/110/120 km / h)" (using the west \& north legs), that a Detailed Analysis is required in 2045.

5.3 Detailed Analysis

Right Tum

In accordance with Alberta Transportation's "Highway Geometric Design Guide" (Section D.7.7), an exclusive right tum lane is warranted on an undivided highway when all three of the following conditions are met:

- Main (orthough) road AADT $\geq 1,800$
- Intersecting road AADT 900
- Right tum daily traffic volume ≥ 360 for the movement in question.

The following table indicates the status of these requirements for right tums from Highway 644:02 westbound to 47th Street northbound.

Table 5.3.1 - Right Turn Warrant - West Bound

Condition	Existing Year 2021	Stage 1 No Dev. Traffic Year 2025	 Stage 2 (50\%) Year 2035	 Stage 2 (100\%) Year 2045
Main Road (Hwy. 644)	(Condition Met)	(Condition Met)	(Condition Met)	(Condition Met)
AADT $\geq \mathbf{1 8 0 0}$	1238	1416	1676	1884
	(No)	(No)	(No)	(Yes)
Intersecting Road (47 ${ }^{\text {th }}$ Street)	164	194	360	468
AADT $\geq \mathbf{9 0 0}$	(No)	(No)	(No)	(No)
Right turn daily traffic $\geq \mathbf{3 6 0}$	24			
	(No)	(No)	(No)	(No)
For movement in question	(No)	(No)	(No)	(No)

Based on the projected volumes, an exclusive right tum lane is not required for the westbound direction for the next 24 years with the existing traffic in 2021 and added traffic from the proposed development.

Left Tum

The Highway Geometric Design Guide Section D.7.6 gives graphical guidelines for determining left tum warrant. The graphs use peak (100 th highest) hour volumes and factor in percent tuming and design speed to identify the required treatment for the intersection. The following table shows the treatments needed for current and
projected traffic volumes.
Table 5.3.2 - Left Turn Warrant - East Bound AM Peak

	Existing Year 2021	Stage 1 Year 2025	 Stage 2 (50\%) Year 2035	 Stage 2 (100\%) Year 2045
Peak 100th Hour - AM Peak Hr				
\% Left Turns	23.3%	21.7%	29.8%	33.3%
$\mathbf{V}_{\mathrm{a}}=$ Advancing Volume (VPH)	60	69	84	96
$\mathbf{V}_{\mathbf{0}}=$ Opposing Volume (VPH)	76	83	97	109
$\mathbf{V I = \text { Left turning Volume (VPH) }}$	14	15	25	32
Design Speed	$80 \mathrm{~km} / \mathrm{hr}$			
Required Treatment Type	Type I	Type I	Type II	Type II

Table 5.3.3 - Left Turn Warrant - East Bound PM Peak

	Existing Year 2021	Stage 1 Year 2025	 Stage 2 (50\%) Year 2035	 Stage 2 (100\%) Year 2045
Peak 100th Hour - PM Peak Hr				
\% Left Turns	2.6%	3.8%	9.4%	11.9%
$\mathbf{V}_{\mathbf{a}}=$ Advancing Volume (VPH)	77	80	96	109
$\mathbf{V}_{\mathbf{0}}=$ Opposing Volume (VPH)	47	56	64	72
$\mathbf{V I =}$ Left turning Volume (VPH)	2	3	9	13
Design Speed	$80 \mathrm{~km} / \mathrm{hr}$			
Required Treatment Type	Type I	Type I	Type II	Type II

For the Eastbound direction of the intersection, a Type lla intersection treatment is wa ranted in 2035 as shown below:

5.4 Intersectional Sight Distance

In accordance with section D.4, "Sight Distances at Intersections", the sight distance for left tuming vehic les from the approach, without interfering with vehicles nearing the intersection, is used for determination of minimum sight distance requirements. Using Fig. D-4.2.2.2 below, the required sight distances for various vehicle types with an $80 \mathrm{~km} / \mathrm{hr}$ design speed are as follows:

Vehicle Type
Passenger Vehicle (P)
Single Unit or Bus (SU)
Semi-Trailer Combination (WB15)
Semi-Tra iler Combination (WB21, WB23, WB28, WB33)

Required Sight Distance - $80 \mathrm{~km} / \mathrm{hr}$.
155 m
235 m
310 m
410 m

The site distance is greater than 410 metres in both directions on Hwy. 644:02 at the Hwy. 644/47th Street intersection.

5.5 Illumination \& Signalization

Illumination and signalization warrants were reviewed. The results are summarized in the Table below:

Location	Year	Illumination Warrant Score	Illumination Warrant Met? (Min. 120)	Signalization Warrant Score	Signalization Warrant Met?
Hwy. 644:02 $\&$ $47^{\text {th }}$ Street	2045	43	No	N/A	No

Illumination is not warranted for the intersection for the next 24 years.
Traffic signalsare not warranted at the intersection for the next 24 yearsasthe tuming traffic volumes are too low.

IRAFFC IMPACTASSESSMENT

REDWATER INDUSIRIAL SUBDIVISION 44th Street, Hwy. 38:10 \& Hwy. 644 SW 29-57-21-W4M Town of Redwater

5.6 Capacity Analysis

A capacity a nalysis was performed for the intersection for the 100th highest hour for the AM \& PM Peak Hours for Years 2021, 2025, 2035 and 2045. The traffic analysis was completed using Synchro 10 software based on HCM 2000 and HCM 2010 methodology. A saturation flow of 1700 vpl was used in this a nalysis. See the table below for the results. Results below are reported in HCM 2000 methodology.
 Hwy. 644:02 \& 47 ${ }^{\text {th }}$ Street
With Development in Years 2035 \& 2045

$\mathrm{D}_{\&}$ PAULICHUK

IRAFFC IMPACTASSESSMENT

Using 2.0\% Growth Rate non-compounded per year

$\begin{aligned} & \text { Year } \\ & 2045 \end{aligned}$	AM Peak	LOS	A	A	A
		Delay (s)	2.4	0.0	9.5
		v/c Ratio	0.02	0.08	0.02
		Queue 95th	0.6	0.0	0.5
		LOS	A	A	A
	PM	Delay (s)	0.8	0.0	9.4
	Peak	v/c Ratio	0.01	0.05	0.06
		Queue 95th	0.2	0.0	1.4

The Roadway Capacity Analysis indicates that the intersection will have sufficient capacity forthe next 24 years with the proposed added development traffic with the LOS reaching only A on all three legs of the intersection. Further to this, when the growth rate for Hwy. 644:02 is increased from 1.0% growth peryearto 2.0% growth per year, the capacity a nalysis still indicates that the intersection maintains its capacity for the next 24 years. See Appendices for detailed reports.

LEVEL OF SERVICE (LOS) CRIERIA

Control Delay Per Vehicle (s)	Los by Volume to Capacity Ratio	
	≤ 1	>1
≤ 10	A	F
>10 and ≤ 15	B	F
>15 and ≤ 25	C	F
>25 and ≤ 35	D	F
>35 and ≤ 50	E	F
>50	F	F

Level of Service "A"

Level of Service "C"

Level of Service "E"

Level of Service "B"

Level of Service "D"

Level of Service "F"

5.7 Analysis Summary

A detailed a nalysis wa scompleted forthisreport at the intersection of Highway 644:02 and $47^{\text {th }}$ Street in the Town of Redwater. The results are as follows:

- Using Alberta Transportation Design Guidelines, the intersection treatment analysis indicated that a Type lla intersection treatment is warranted in 2035 once 50% of the proposed development has filled and has connected to $47^{\text {th }}$ Street.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has suffic ient
capacity to support traffic movements to a Level of Service of A for the next 24 years, with the proposed development fully utilized in 2045, with or without a Type lla intersection treatment.
- Illumination is not wa ranted at this intersection for the next 24 years.
- Traffic Signals at this intersection are not wa ranted for the next 24 years.
- Sight distance for Design Vehicles of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 70 kph is suffic ient.
- A Pedestrian Crossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this a rea and are assumed to be zero to very low.

This intersection is within the Town of Redwater and thus an urban area. The posted speed is only 70 kph a nd the capacity a nalysis indic ates that the longest delay times in 24 years are less than 10 secondsfora ny movement at the intersection. The delays and queue lengths are minimal and the intersection should operate effic iently for 24 years with the present intersection treatment. The tum radii are large and accommodates all truck traffic in the area. There are no operational issues presently at the site.

Future consideration should be made to change the posted speed in the area from 70 kph to 50 kph , so that all intersections and approaches are within a 50 kph posted speed zone.

There is an issue of limited right-of-way at this intersection. The highway was originally constructed within a basic 22.86 m (75 foot) right-of-way. The existing right-of-way does not allow for a full Type lla intersection treatment standard to be constructed. There is some additional width a vailable on the north side of Hwy. 644 only, however the majority of the road widening in a Type lla treatment would need to occuron the south side of Hwy. 644. Specific ally, for a Type II intersection treatment on the south side would require +20 m for a proper rural cross-section (1 side: $3.7 \mathrm{~m}+3.5 \mathrm{~m}+2.3 \mathrm{~m}+$ 5 m SS +3.5 m Ditch +3 m BS). The existing right-of-way only allows for a modified intersection width improvement using a 0.5 m shoulder width and $3: 1$ sideslopes, if only in a fill situation. Fortunately, at this location, there are no backslopes and the road is mainly in a fill situation. This would allow for the addition la ne being added with the suggested modifications. See below.

IRAFFC IMPACTASSESSMENT

It is also recommended that $15: 1$ tapers be utilized in lieu of $25: 1$ tapers since this location is within an established urban a rea with a 70 kph and potentially reduced to 50 kph posted speed. This will also help avoid tapers from going through approaches and other intersections, since there are numerous approaches in this area. The 40:1 a nd 25:1 ta per rates are shown on AT's design guidelines are mainly intended for rural situations, as there is often signific antly speed reductions due to tuming movements. These speed reductionsare usually from a speed of $100 \mathrm{~km} / \mathrm{h}$. For an established urban location, traffic should be

HIGHWAY DESIGN SPEED $(\mathrm{km} / \mathrm{h})$	LENGTH AND TAPER RATIO "T" OF RIGHT TURN TAPER (m)
50	87.5 ot $25: 1$
60	87.5 at $25: 1$
70	87.5 ot $25: 1$
80	87.5 at $25: 1$
90	87.5 ot $25: 1$
100	87.5 at $25: 1$
110	87.5 ot $25: 1$
120	140.0 at $40: 1$
130	140.0 at $40: 1$

It is likely that additional right-of-way at this intersection will not be immediately attainable, and therefore, a modified intersection treatment as described above should suffice forproposed development in the area for the next 24 years.

IRAFFC IMPACTASSESSMENT

In summary, a Type lla intersection treatment is not wa ranted until 2035 (50\% of Phase Il occupied) by Alberta Transportation standards. A capacity analysis indicates delays would be minimal and within acceptable standards with or without an intersection improvement. In 2035, a Type lla intersection treatment can be constructed but with modifications to the standard type Ilc treatment that include 0.5 m wide shoulders, $3: 1$ sideslopes and $15: 1$ ta pers.

Since other developments are presently being constructed in the area, cost sharing of this improvement is likely to be considered. The ratio of estimated existing and development traffic volumes using this intersection from 2021 to 2045 is shown below. This will change as more development is proposed.

IRAFFC IMPACTASSESSMENT

6. TRAFFIC ANALYSIS-47Th SIREE \& 54TH AvENUE

6.1 Design Speed

The posted speed on $44^{\text {th }}$ Street at this location is $50 \mathrm{~km} / \mathrm{hr}$. A design speed of 60 km / h will be used for the analysis and the results assessed upon this.

6.2 Determination Based on Traffic Volume Wanrant Chart

The Alberta Transportation Design Guidelines are intended for provincial highway design and not necessary for local roadways, especially within urban municipalities. For this reason, the intersection analysis procedure outlined in Chapter D of the Alberta Transportation Design Guidelines will not be used for this intersection. Intersection treatment will be based on adequate capacity and urban road standards.

6.3 Capacity Analysis

A capacity analysis was performed for the intersection for the $100^{\text {th }}$ highest hour for the AM \& PM Peak Hours for Years 2021, 2025, 2035 and 2045. The traffic analysis was completed using Synchro 10 software based on HCM 2000 and HCM 2010 methodology. A saturation flow of 1700 vpl was used in this analysis. See the table below for the results. Results below are reported in HCM 2000 methodology.

$44^{\text {th }}$ Street $\& 54^{\text {th }}$ Avenue
With Development in Years 2025, 2035 \& 2045

REDWATER INDUSTRIAL SUBDIVISION 44th Street, Hwy. 38:10 \& Hwy. 644 SW 29-57-21-W4M Town of Redwater

$\mathrm{D}_{{ }^{\text {a }}}$ A PAULICHUK

Using 2.0\% Growth Rate non-compounded per year on $44^{\text {th }}$ Street

$\begin{aligned} & \text { Year } \\ & 2045 \end{aligned}$	$\begin{aligned} & \text { AM } \\ & \text { Peak } \end{aligned}$	LOS	A	A	A	A
		Delay (s)	0.7	4.0	9.4	9.3
		v/c Ratio	0.00	0.01	0.07	0.03
		Queue 95th	0.1	0.2	1.9	0.8
	$\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$	LOS	A	A	B	A
		Delay (s)	2.8	4.1	10.2	9.6
		v/c Ratio	0.01	0.02	0.10	0.04
		Queue 95th	0.3	0.4	2.7	1.1

The Roadway Capacity Analysis indicates that the intersection will have sufficient capacity forthe next 24 years with the proposed added development traffic with the LOS reaching only A on all three legs of the intersection. Further to this, when the growth rate for $44^{\text {th }}$ Street is increased from 1.0\% growth per year to 2.0% growth per year, the capacity a nalysis still indicates that the intersection maintains its capacity for the next 24 years. See Appendicesfor detailed reports.

6.4 Intersectional Sight Distance

In accordance with section D.4, "Sight Distances at Intersections", the sight distance for left tuming vehic les from the approach, without interfering with vehicles nearing the intersection, is used for determination of minimum sight distance requirements. Using Fig. D-4.2.2.2 below, the required sight distances for various vehicle types with an $80 \mathrm{~km} / \mathrm{hrdesign}$ speed are as follows:

Vehicle Type	Required Sight Distance $-60 \mathrm{~km} / \mathrm{hr}$.
Passenger Vehicle (P)	112 m
Single Unit or Bus(SU)	178 m
Semi-Tra iler Combination (WB15)	232 m
Semi-Tra iler Combination (WB21, WB23,	305 m
WB28, WB33)	

PAULICHUK

The site distance is greater than 310 metres in both directionson $44^{\text {th }}$ Street at the $44^{\text {th }}$ Street/ $54^{\text {th }}$ Avenue intersection.

6.5 Illumination \& Signalization

Illumination and signalization warrants were reviewed. The results are summanized in the Table below:

Location	Year	Illumination Warrant Score	Illumination Warrant Met? (Min. 120)	Signalization Warrant Score	Signalization Warrant Met?
$\mathbf{4 4}^{\text {th }}$ Street $\boldsymbol{\&}$ $\mathbf{5 4}^{\text {th }}$ Avenue	2045 Growth Rate	76	No	N/A	No

Illumination is not warranted for the intersection for the next 24 years.
Traffic signals are not wa ranted at the intersection for the next 24 years as the tuming traffic volumes are too low.

6.6 Analysis Summary

An intersection a nalysis was completed for this report at the intersection of $44^{\text {th }}$ Street and $54^{\text {th }}$ Avenue in the Town of Redwater. The results are as follows:

- Alberta Transportation Design Guidelines were not used for intersection treatment requirements as this intersection is not a provincial highway and are urban municipal road with posted speeds of 50 kph . Using provincial highway standards for intemal municipal roadways would impose unnecessary design requirements on lower road classifications.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has sufficient capacity to support traffic movementsto a Level of Service of A for the next 24 years, with the proposed development fully utilized in 2045, with the existing intersection configuration. Since the intersection functioning efficiently, no additional tuming lanes or treatment improvements are wa rranted.
- Illumination is not wa ranted at this intersection for the next 24 years.
- Traffic Signals at this intersection are not wa ranted for the next 24 years.
- Sight distance for Design Vehic les of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 50 kph is sufficient.
- A Pedestrian Crossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this a rea and are assumed to be

IRAFFC IMPACTASSESSMENT

zero to very low.
In summary, this intersection is within the Town of Redwater and thus an urban area. The posted speed is only 50 kph and the capacity analysis indicates that the longest delay times in 24 years are 10 sec onds or less for any movement at the intersection. The delays and queue lengths are minimal and the intersection should operate effic iently for 24 years with the present intersection treatment.

In summary, the existing intersection configuration is suffic ient forthe traffic projected to use this intersection by the proposed development.

IRAFFC IMPACTASSESSMENT

7. CONCLUSION \& RECOMMENDATIONS

7.1 Recommendations

The proposed development is an Industrial Park Subdivision under the Town of Redwater's Land Use District defined as "Industrial (M2) District) as shown below:

The conceptual layout for the Proposed Development is shown below:

IRAFFC IMPACTASSESSMENT

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 1	3800.00 m	0.38 ho .	0.94 ac .
UNIT 2	3800.00 m	0.38 ho .	0.94 ac .
UNIT 3	$4087.72 \mathrm{~m}^{2}$	0.41 ha .	1.01ac.
UNIT 4	$4238.98 \mathrm{~m}^{2}$	0.42 ha .	1.05ac.
UNIT 5	$4250.00 \mathrm{~m}^{2}$	0.42 ha .	1.05ac.
UNIT 6	4238.19 m	0.42 ha .	1.05ac.
UNIT 7	4925.96 m	0.49 ha .	1.22 ac .
UNIT 8	4942.80 m	0.49 ho .	1.22ac.
UNIT 9	4904.73 m	0.49 ha .	1.21ac.
UNIT 10	$4912.36 \mathrm{~m}^{2}$	0.49 ha .	1.21ac.
UNIT 11	4046.86 m	0.40 ha .	1.00ac.
UNIT 12	4046.86 m	0.40 ho .	1.00ac.
UNIT 13	4046.86 m	0.40 ho .	1.00ac.
UNIT 14	$4046.86 \mathrm{~m}^{2}$	0.40 ha .	1.00ac.
UNIT 15	4046.86 m	0.40 ha .	1.00ac.
UNIT 16	$4025.38 \mathrm{~m}^{2}$	0.40 ha .	0.99 ac.
UNIT 17	4030.00 m	0.40 ha .	1.00ac.
UNIT 18	4030.00 m	0.40 ha .	1.00ac.

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ho.)	Acre (ac.)
UNIT 19	4675.00 m	0.47 ha .	1.16ac.
UNIT 20	4675.00 m	0.47 ha .	1.16oc.
UNIT 21	4675.00 m	0.47 ha .	1.16oc.
UNIT 22	4675.00 m *	0.47 ha .	1.16ac.
UNIT 23	4682.26 m	0.47 ha .	1.16 ac .
UNIT 24	$4561.58 \mathrm{~m}^{2}$	0.46 ha .	1.13oc.
UNIT 25	4259.80 m	0.43 ha .	1.05ac.
UNIT 26	$4275.57 \mathrm{~m}^{2}$	0.43 ha .	1.06ac.
UNIT 27	$4272.82 \mathrm{~m}^{2}$	0.43 ha .	1.06ac.
UNIT 28	4305.67 m	0.43 ha .	1.06 ac .
UNIT 29	$5182.04 \mathrm{~m}^{2}$	0.52 ha .	1.28ac.
UNIT 30	4361.10 m	0.44 ha .	1.08ac.
UNIT 31	$4364.47 \mathrm{~m}^{2}$	0.44 ha .	1.08ac.
UNIT 32	4382.05 m	0.44 ha .	1.08ac.
UNIT 33	$4361.77 \mathrm{~m}^{2}$	0.44 ha .	1.08ac.
UNIT 34	4355.37 m	0.44 ha .	1.08ac.
UNIT 35	$23343.89 \mathrm{~m}^{2}$	2.33 ha .	5.77ac.
UNIT 36	12824.68 m	1.28ha.	3.17 ac .

Parcel Area Table			
Parcel \#	Area m^{2}	Hectares (ha.)	Acre (ac.)
UNIT 37	10778.40 m	1.08ha.	2.66 ac .
UNIT 38	19876.15 m	1.99ha.	4.91 ac .
UNIT 39	$2902.00 \mathrm{~m}^{2}$	0.29 ha .	0.72 oc .
UNIT 40	$14229.26 \mathrm{~m}^{2}$	1.42 ha .	3.52 ac .
UNIT 41	$7914.45 \mathrm{~m}^{2}$	0.79 ho .	1.96 ac .
UNIT 42	7496.30 m	0.75 ha .	1.85ac.
UNIT 43	2648.06 m	0.26 ho .	0.65 oc .
UNIT 44	$5246.26 \mathrm{~m}^{2}$	0.52 ho .	1.30ac.
UNIT 45	77.87 m	0.01ho.	0.02ac.
UNIT 46	$716.12 \mathrm{~m}^{2}$	0.07 ha .	0.18 ac .
UNIT 47	3072.49 m	0.31 ha .	0.76 ac .
UNIT 48	1377.66 m	0.14 ho .	0.34 oc .
UNIT 49	95514.77 m	9.55 ha .	23.60ac.
UNIT 50	$1208.44 \mathrm{~m}^{2}$	0.12 ha .	0.30 ac .
UNIT 51	6238.44 m	0.62 ha .	1.54 ac .
UNIT 52	$1510.19 \mathrm{~m}^{2}$	0.15 ha .	0.37 oc .

The proposed layoutcreatesa new accessonto $44^{\text {th }}$ Street to the west at $54^{\text {th }}$ Avenue and a secondary access to the south through the existing industrial subdivision onto Highway 644:02 (48 ${ }^{\text {th }}$ Avenue) at 47 Street.

The anticipated phasing of the development is shown below:

$D_{d_{A}}$
PAULICHUK

IRAFFC IMPACTASSESSMENT

The anticipated trip distribution for the proposed developmnet will first occur from one access point at the north west comer of the property at the junction of $54^{\text {th }}$ Avenue \& $44^{\text {th }}$ Street for Phase 1 . The a ntic ipated trip distribution percentages for Phase 1 is shown below.

Figure 2.4.1 - Phase1 Only - 2025

In Phase 1, the traffic to the north along 44 ${ }^{\text {th }}$ Street from the development access is anticipated to be low as existing development to the north is low and the local roadway is not as developed as Highway 829 to the east. Traffic will likely utilize existing paved roadways and highways to the south. However, traffic will likely use $54^{\text {th }}$ Avenue to the west, asthis route is a shorterdistance to the Redwaterdowntown area. This traffic is not expected to be large or heavy vehicles, just passenger vehic les running errands or going for lunch.

For Phase 2, slightly more traffic may go north from the north west comer of the development property. Most traffic still proceeds south to the junction of Highway

IRAFFC IMPACTASSESSMENT

38 \& Highway 644. Due to the location of the Alberta Industrial Heartland a rea, much of the proposed development is anticipated to service this area and its future growth.

A new access will be made to the south existing industrial park at 47th Street which connects to Highway 644 ($48^{\text {th }}$ Avenue). A portion of traffic from this intersection is antic ipated to go east on Highway 644 and then north on Highway 829. The traffic on the west leg of this intersection is split 50% to the west and 50% to the south.

Figure 2.4.2-Phase 1 \& 2 - Year 2030 \& 2040

Additional future background traffic was reviewed for the area surrounding the proposed development. There are three additional areas that new traffic can generate in the future along 44th Street and Hwy. 644:02 outside the development area as follows:

IRAFFC IMPACTASSESSMENT

The above areaswere added to the background traffic estimations.

A detailed analysis was completed at the intersection of Highway 38:10, Highway 644:02 and 444 ${ }^{\text {th }}$ Street The results a re a sollows:

- Using Alberta Transportation Design Guidelines, the intersection treatment analysis indicated that a Type Ilc intersection treatment is warranted now in 2021 and was warranted many years before this upon review of past traffic volumes. A Type llc intersection treatment requirement is ma inta ined for the next 24 years, with the proposed development fully utilized in 2045.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has suffic ient capacity to support traffic movements to a Level of Service of C for the next 24 years, with the proposed development fully utilized in 2045.
- Partial illumination is wa rranted in 2025, however no action is required since full urban street lighting exists on all four legs of the intersection.
- Traffic Signals at this intersection are not warranted for the next 24 years. Hence, a roundabout is also not a consideration for the next 24 years at this location.
- Sight distance for Design Vehicles of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 50 kph is suffic ient.
- A Pedestrian C rossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this a rea and are assumed to be zero to very low.

This intersection is within the Town of Red water and thus an urban area. The posted speed is only 50 kph a nd the capacity a nalysis indic a tes that the longest delay times in 24 years are 14 - 16 seconds for a left tum/straight thru movement from the Hwy. 38:10 South Leg. The delays and queue lengths are minimal and the intersection should operate efficiently for 24 years and more with the present intersection treatment. There are no operational issues presently at the site.

It is likely that additional right-of-way at this intersection will not be immediately attainable, and therefore, a modified intersection treatment will be needed and should suffice for proposed development in the area for the next 24 years.

In summary, a Type Ilc intersection treatment is warranted in Year 2021 but with modifications to the standard type Ilc treatment that include 0.5 m wide shoulders, 3:1 sideslopes and 15:1 ta pers. Improvements are not required in the SW quadrant.

Since other developments are presently being constructed in the area, cost sharing of this improvement is likely to be considered.

A detailed analysis was completed at the intersection of Highway 644:02 and 47 ${ }^{\text {th }}$ Street The results are asfollows:

- Using Alberta Transportation Design Guidelines, the intersection treatment analysis indicated that a Type lla intersection treatment is warranted in 2035 once 50% of the proposed development has filled, after connecting to $47^{\text {th }}$ Street.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has sufficient capacity to support traffic movementsto a Level of Service of A for the next 24 years, with the proposed development fully utilized in 2045, with or without a Type lla intersection treatment.
- Illumination is not wa ranted at this intersection for the next 24 years.
- Traffic Signals at this intersection are not wa ranted for the next 24 years.
- Sight distance for Design Vehicles of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 70 kph is sufficient.
- A Pedestrian Crossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this area and are assumed to be zero to very low.

This intersection is within the Town of Redwater a nd thus an urban area. The posted speed is only 70 kph and the capacity analysis indic ates that the longest delay times in 24 years are less than 10 secondsforany movement at the intersection. The delays and queue lengths are minimal and the intersection should operate effic iently for 24 years with the present intersection treatment. The tum radii are large and accommodates all truck traffic in the area. There are no operational issues presently at the site.

Future consideration should be made to change the posted speed in the area from 70 kph to 50 kph , so that all intersections and approaches are within a 50 kph posted speed zone.

It is likely that additional right-of-way at this intersection will not be immediately attainable, and therefore, a modified intersection treatment will be needed and should suffice forproposed development in the area forthe next 24 years.

In summary, a Type lla intersection treatment is not wa ranted until 2035 (50\% of Phase Il occupied) by Alberta Transportation standards. A capacity analysis indicates delays would be minimal and within acceptable standards with or without an intersection improvement. In 2035, a Type lla intersection treatment can be constructed but with modifications to the standard type IIc treatment that include 0.5 m wide shoulders, $3: 1$ sideslopes a nd $15: 1$ tapers.

Since other developments are presently being constructed in the area, cost sharing of this improvement is likely to be considered.

An intersection analysis was completed for this report at the intersection of 44 $^{\text {th }}$ Street and 54 ${ }^{\text {th }}$ Avenue in the Town of Redwater. The results are as follows:

- Alberta Transportation Design Guidelines were not used for intersection treatment requirements as this intersection is not a provincial highway and are urban municipal road with posted speeds of 50 kph . Using provincial highway standards for intemal municipal roadways would impose unnecessary design requirements on lower road classifications.
- Using Synchro 10 software based on HCM 2000 and HCM 2010 methodology, the existing intersection treatment shows that the intersection has sufficient capacity to support traffic movementsto a Level of Service of A for the next 24 years, with the proposed development fully utilized in 2045, with the existing
intersection configuration. Since the intersection functioning efficiently, no additional tuming lanes or treatment improvements are warranted.
- Illumination is not wa ranted at this intersection for the next 24 years.
- Traffic Signals at this intersection are not wa ranted for the next 24 years.
- Sight distance for Design Vehicles of Semi-Trailer Combination (WB21, WB23, WB28, WB33) at the posted speed of 50 kph is suffic ient.
- A Pedestrian Crossing Warrant Analysis was not completed at this location as there are no signs of pedestrian walkways in this a rea and are assumed to be zero to very low.

This intersection is within the Town of Redwater and thus an urban area. The posted speed is only 50 kph and the capacity analysis indic ates that the longest delay times in 24 years are 10 seconds or less for any movement at the intersection. The delays and queue lengths are minimal and the intersection should operate efficiently for 24 years with the present intersection treatment.

In summary, the existing intersection configuration is suffic ient forthe traffic projected to use this intersection by the proposed development.

Overall, the proposed development will have minimal impact to the existing transportation network in the area. Due to recent economic slow downs, it is diffic ult to predict how fast this area will grow. Both a 1% growth rate and 2% growth were considered in preparation of this report.

REDWATER INDUSIRIAL SUBDIVISION

IRAFITC IMPACTASSESSMENT

7.2 Closure

This report has been prepared in accordance to provincial and municipal requirements and guidelines. The report provides findings and recommendations based on available data and site inspections.

Darcy O. Paulichuk, P. Eng.

Dec. 31, 2020

APEGGA Permit to Practice Number: P12132

APPENDIX A

TRAFFIC DATA

North On 44 St					
Vehicle Type				Vol	$\%$
A: Passenger Vehicle	581	93.7			
B: Recreational Vehicle	4	0.6			
C: Bus	2	0.3			
D: Single Unit Truck	26	4.2			
E: Tractor Trailer Unit	7	1.1			
ASDT 730	AADT				
620					

Reference No.: 997120
Intersection of:
38 \& 644 AT REDWATER
Turning Movement Summary Diagram

North On 44 St			
Vehicle Type	Vol	$\%$	
A: Passenger Vehicle	37	90.2	
B: Recreational Vehicle	0	0.0	
C: Bus	1	2.4	
D: Single Unit Truck	3	7.3	
E: Tractor Trailer Unit	0	0.0	
\mid Total			
41			

Reference No.: 997120

Intersection of:

38 \& 644 AT REDWATER
Turning Movement Summary Diagram

North On 44 St			
Vehicle Type	Vol	$\%$	
A: Passenger Vehicle	57	96.6	
B: Recreational Vehicle	0	0.0	
C: Bus	1	1.7	
D: Single Unit Truck	0	0.0	
E: Tractor Trailer Unit	1	1.7	
\mid Total			
59			

Turning Movement Summary Diagram

Reference No.: 100590

Intersection of:

644 \& 829 E OF REDWATER

North On 829			
Vehicle Type			
Vol	$\%$		
A: Passenger Vehicle	916	84.8	
B: Recreational Vehicle	36	3.3	
C: Bus	3	0.3	
D: Single Unit Truck	28	2.6	
E: Tractor Trailer Unit	97	9.0	
ASDT 1280	AADT		
1080			

Reference No.: 100590
Intersection of:
644 \& 829 E OF REDWATER
Turning Movement Summary Diagram

North On 829						
Vehicle Type	Vol	$\%$				
A: Passenger Vehicle	89	83.2				
B: Recreational Vehicle	1	0.9				
C: Bus	0	0.0				
D: Single Unit Truck	3	2.8				
E: Tractor Trailer Unit	14	13.1				
Total						

Reference No.: 100590
Intersection of:
644 \& 829 E OF REDWATER
Turning Movement Summary Diagram

North On 829		
Vehicle Type	Vol	$\%$
A: Passenger Vehicle	99	87.6
B: Recreational Vehicle	4	3.5
C: Bus	0	0.0
D: Single Unit Truck	3	2.7
E: Tractor Trailer Unit	7	6.2
Total		
113		

APPENDIX B

HWY. 38:10, HWY. 644:02 \& 44TH STREET INTERSECTION ANALYSIS

Turning Movement Summary Diagram

Intersection of: Hwy. 38:10, Hwy. 644:02 \& 44th Stre

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	December 28, 2020		
Hwy. 38:10	Main Road Minor Road City/Town			Year 2021 with Proposed Development using 1\% Growth Rate		
Hwy. 644:02						
Redwater						
GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	4		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)	100		5		OK	
Channelization Factor					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category =		0				
Posted Speed Category =	B	0				
Posted Speed Category =		0				
Posted Speed Category =		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
				Geometric F	Subtotal	26

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized
LIGHTING IS NOT WARRANTED

SUMMARY	
Geometric Factors Subtotal	26
Operational Factor Subtotal	80
Environmental Factor Subtotal	0
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{1 0 6}$

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	December 28, 2020		
Hwy. 38:10	Main Road Minor Road City/Town			Year 2025 with Proposed Development using 1\% Growth Rate		
Hwy. 644:02						
Redwater						
GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	4		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)	100		5		OK	
Channelization Factor					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category =		0				
Posted Speed Category =	B	0				
Posted Speed Category =		0				
Posted Speed Category =		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
				Geometric F	Subtotal	26

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized
ILLUMINATION WARRANTED
REVIEW SITE AND COLLISIONS TO DETERMINE LIGHTING TYPE
(PARTIAL OR DELINEATION)

SUMMARY	
Geometric Factors Subtotal	26
Operational Factor Subtotal	110
Environmental Factor Subtotal	0
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{1 3 6}$

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	December 28, 2020		
Hwy. 38:10	Main Road Minor Road City/Town			Year 2045 with Proposed Development using 1\% Growth Rate		
Hwy. 644:02						
Redwater						
GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	4		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)	100		5		OK	
Channelization Factor					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category =		0				
Posted Speed Category =	B	0				
Posted Speed Category =		0				
Posted Speed Category =		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
				Geometric F	Subtotal	26

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized
ILLUMINATION WARRANTED
REVIEW SITE AND COLLISIONS TO DETERMINE LIGHTING TYPE
(PARTIAL OR DELINEATION)

SUMMARY	
Geometric Factors Subtotal	26
Operational Factor Subtotal	110
Environmental Factor Subtotal	0
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{1 3 6}$

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	December 28, 2020		
Hwy. 38:10	Main Road Minor Road City/Town			Year 2045 with Proposed Development using 2\% Growth Rate		
Hwy. 644:02						
Redwater						
GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	4		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)	100		5		OK	
Channelization Factor					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category =		0				
Posted Speed Category =	B	0				
Posted Speed Category =		0				
Posted Speed Category =		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
				Geometric F	Subtotal	26

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized
ILLUMINATION WARRANTED
REVIEW SITE AND COLLISIONS TO DETERMINE LIGHTING TYPE
(PARTIAL OR DELINEATION)

SUMMARY	
Geometric Factors Subtotal	26
Operational Factor Subtotal	110
Environmental Factor Subtotal	0
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{1 3 6}$

2005 Canadian Matrix Traffic Signal Warrant Analysis

Main Street (name)	Highway 38:10	Direction (EW or NS) Direction (EW or NS)	EW	Date: City:	Dec 28, 2020
Side Street (name)	Hwy. 38:10/44th Street		NS		Urban
Quadrant (if appl)	Year 2045 2\% GR				

Lane Configuration		$\frac{\stackrel{5}{3}}{\stackrel{\rightharpoonup}{4}}$	$\begin{aligned} & \stackrel{5}{*} \\ & \underset{F}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\approx} \\ & \approx \\ & \neq \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{\stackrel{\alpha}{\omega}}}{\stackrel{\rightharpoonup}{\omega}}$				
Hwy. 644:02	WB	0	0	1	0	0	0	1		
Hwy. 38:10	EB	0	0	1	1	0	0	2		
Hwy. 38:10	NB	0	0	1	0	0				
44 Street	SB	0	0	1	0	0				

Demographics		
Elementary School	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	n
Central Business District	$(\mathrm{y} / \mathrm{n})$	y

APPENDIX C

HWY. 644:02 \& 47TH STREET INTERSECTION ANALYSIS

$\mathrm{D}_{\&} \mathrm{~A}$ COULICHULTING LTD

Turning Movement Summary Diagram

Intersection of:
Hwy. 38:10, Hwy. 644:02 \& 44th Street

2019 AADT
from Estimation using Air Photo

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Illumination of Isolated Rural Intersections LIGHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	December 28, 2020		
Hwy. 644:02 47th Street Redwater	Main Road Minor Road City/Town			Year 2045 with Proposed Development		
GEOMETRIC FACTORS						
Channelization Rating Presence of raised channelization? (Y / N) Highest operating speed on raised, channelized approach (km/h) Channelization Factor	Value	Rating	Weight	Comments	Check	Score
	Descriptive			Refer to Table 1(A) to determine rating value	OK	
	n				OK	
	100		5		OK	
					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
		0				
	B	0				
		0				
		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	3	1	3	Number of legs $=3$ or more	OK	3
				Geometric F	Subtotal	23

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized
LIGHTING IS NOT WARRANTED

SUMMARY		
Geometric Factors Subtotal	23	
Operational Factor Subtotal	20	
Environmental Factor Subtotal	0	
Collision History Subtotal	0	
TOTAL POINTS		43

APPENDIX D

44TH STREET \& 54 ${ }^{\text {th }}$ AVENUE INTERSECTION ANALYSIS

Turning Movement Summary Diagram

Intersection of: Hwy. 38:10, Hwy. 644:02 \& 44th Stre

AAD
From McEIhanney TIA

NR: Traffic from North Turning Right
NL: Traffic from North Turning Left
NT: Traffic from North Proceeding Through
SR: \quad Traffic from South Turning Right
Traffic from South Turring Left
Traffic from South Proceeding Through
Traffic from East Turning Right
Traffic from East Turning Left
Traffic from East Proceeding Through
R: Taffic from West Turning Right
$\begin{array}{ll}\text { WL: } & \text { Traffic from West Turning Left } \\ \text { WT: } & \text { Traffic from West Proceeding Throug }\end{array}$
TURNING MOVEMENT ABBREVIATIO
ADT: Average Annual Daily Traffic
Average daily traffic expressed as vehicles per day for period of
January 1 to December 31 (365 days)
ASDT: Average Summer Daily Traffic
Average daily traffic expressed as vehilces per day for period of May 1 to September 30 (153 days)

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

Turning Movement Summary Diagram

This spreadsheet is to be used in conjunction with Illumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	4		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)	100		5		OK	
Channelization Factor					OK	20
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10 's of km / h)	100				OK	
Radius of Horizontal Curve (m)	T			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category $=$		0				
Posted Speed Category =	B	0				
Posted Speed Category $=$		0				
Posted Speed Category $=$		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
Geometric Factors Subtotal						26

OPERATIONAL FACTORS

Geometric Factors Subtotal	26
Operational Factor Subtotal	50
Environmental Factor Subtotal	0
Collision History Subtotal	0
TOTAL POINTS	$\mathbf{7 6}$
TOTA	

	\rangle	\rightarrow		7			4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			\uparrow			\uparrow	
Traffic Volume (veh/h)	4	0	23	0	0	0	7	10	0	0	7	6
Future Volume (Veh/h)	4	0	23	0	0	0	7	10	0	0	7	6
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	4	0	24	0	0	0	7	11	0	0	7	6
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	0			0			30	20	12	26	8	0
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	0			0			30	20	12	26	8	0
tC , single (s)	4.1			4.1			7.2	6.6	6.3	7.2	6.6	6.3
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.6	4.1	3.4	3.6	4.1	3.4
p0 queue free \%	100			100			99	99	100	100	99	99
cM capacity (veh/h)	1604			1604			946	856	1046	954	869	1062
Direction, Lane \#	EB 1	WB 1	NB 1	SB1								
Volume Total	28	0	18	13								
Volume Left	4	0	7	0								
Volume Right	24	0	0	6								
cSH	1604	1700	889	949								
Volume to Capacity	0.00	0.00	0.02	0.01								
Queue Length 95th (m)	0.1	0.0	0.5	0.3								
Control Delay (s)	1.1	0.0	9.1	8.8								
Lane LOS	A		A	A								
Approach Delay (s)	1.1	0.0	9.1	8.8								
Approach LOS			A	A								
Intersection Summary												
Average Delay			5.2									
Intersection Capacity Utilization			17.8\%		U Level of	S Service			A			
Analysis Period (min)			15									

	\rangle	\rightarrow		7		4	4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			$\$$			\uparrow			\uparrow	
Traffic Volume (veh/h)	14	0	11	0	0	0	21	13	0	0	11	9
Future Volume (Veh/h)	14	0	11	0	0	0	21	13	0	0	11	9
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	15	0	12	0	0	0	22	14	0	0	12	9
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	0			0			51	36	6	43	30	0
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	0			0			51	36	6	43	30	0
tC , single (s)	4.1			4.1			7.2	6.6	6.3	7.2	6.6	6.3
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.6	4.1	3.4	3.6	4.1	3.4
p0 queue free \%	99			100			98	98	100	100	99	99
cM capacity (veh/h)	1604			1604			904	833	1054	921	839	1062
Direction, Lane \#	EB 1	WB 1	NB 1	SB1								
Volume Total	27	0	36	21								
Volume Left	15	0	22	0								
Volume Right	12	0	0	9								
cSH	1604	1700	875	922								
Volume to Capacity	0.01	0.00	0.04	0.02								
Queue Length 95th (m)	0.2	0.0	1.0	0.6								
Control Delay (s)	4.1	0.0	9.3	9.0								
Lane LOS	A		A	A								
Approach Delay (s)	4.1	0.0	9.3	9.0								
Approach LOS			A	A								
Intersection Summary												
Average Delay			7.5									
Intersection Capacity Utilization			19.0\%		U Level of	S Service			A			
Analysis Period (min)			15									

	4			\dagger			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	5	9	32	6	4	1	19	14	14	3		7
Future Volume (Veh/h)	5	9	32	6	4	1	19	14	14	3	9	7
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	9	34	6	4	1	20	15	15	3	9	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
PX, platoon unblocked												
VC , conflicting volume	5			9			64	53	26	75	36	4
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	5			9			64	53	26	75	36	4
tC , single (s)	4.1			4.1			7.2	6.6	6.3	7.2	6.6	6.3
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.6	4.1	3.4	3.6	4.1	3.4
p0 queue free \%	100			100			98	98	99	100	99	99
cM capacity (veh/h)	1597			1591			893	817	1027	866	836	1056
Direction, Lane \#	EB 1	WB 1	NB 1	SB1								
Volume Total	48	11	50	19								
Volume Left	5	6	20	3								
Volume Right	34	1	15	7								
cSH	1597	1591	903	911								
Volume to Capacity	0.00	0.00	0.06	0.02								
Queue Length 95th (m)	0.1	0.1	1.4	0.5								
Control Delay (s)	0.8	4.0	9.2	9.0								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.8	4.0	9.2	9.0								
Approach LOS			A	A								
Intersection Summary												
Average Delay			5.6									
Intersection Capacity Utilization			17.0\%	ICU Level of Service					A			
Analysis Period (min)			15									

Appendix F

Certificate of Title


```
S
LINC
```

 SHORT LEGAL
 0021720610 4;21;57;29;SW

TITLE NUMBER
162145728

LEGAL DESCRIPTION

MERIDIAN 4 RANGE 21 TOWNSHIP 57
SECTION 29
QUARTER SOUTH WEST
CONTAINING 64.7 HECTARES (160 ACRES) MORE OR LESS
EXCEPTING THEREOUT:
(A) 3.88 HECTARES (9.60 ACRES) MORE OR LESS SUBDIVIDED UNDER PLAN 3190HW
(B) ALL THAT PORTION DESCRIBED AS FOLLOWS: COMMENCING AT THE POINT OF INTERSECTION OF THE WEST BOUNDARY OF THE SAID QUARTER SECTION AND THE NORTH LIMIT OF NORTH AVENUE AS SHOWN ON SUBDIVISION PLAN 3190HW; THENCE EASTERLY ALONG THE SAID NORTH LIMIT AND ITS PRODUCTION EASTERLY FOUR HUNDRED AND FORTY (440) FEET; THENCE NORTHERLY AND PARALLEL TO THE SAID WEST BOUNDARY TWO HUNDRED AND EIGHT AND SEVENTY HUNDREDTHS (208.70) FEET; THENCE WESTERLY AND PARALLEL TO THE SAID NORTH LIMIT TO THE SAID WEST BOUNDARY; THENCE SOUTHERLY ALONG THE SAID WEST BOUNDARY TO THE POINT OF COMMENCEMENT, CONTAINING 0.849 HECTARES (2.10 ACRES) MORE OR LESS.
(C) 22.87 HECTARES (56.51 ACRES) MORE OR LESS AS SHOWN ON SUBDIVISION PLAN 8120796
(D) THE MOST EASTERLY TEN (10) METRES IN PERPENDICULAR WIDTH THROUGHOUT, LYING NORTH OF THE NORTH LIMIT OF RIGHT-OF-WAY PLAN 2316KS
EXCEPTING THEREOUT ALL MINES AND MINERALS

ESTATE: FEE SIMPLE
MUNICIPALITY: TOWN OF REDWATER
REFERENCE NUMBER: 162145727

```
            REGISTERED OWNER(S)
REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION
-----------------------------------------------------------------------------------
162 145 728 02/06/2016 TRANSFER OF LAND $2,500,000 $2,500,000
```

OWNERS

0974200 B.C. LTD.

OF 4528-99 ST
EDMONTON
ALBERTA T6E 5H5

ENCUMBRANCES, LIENS \& INTERESTS

REGISTRATIO NUMBER	DATE (D/M/Y)	PARTICULARS
3004HL	19/01/1950	CAVEAT
		CAVEATOR - ARC RESOURCES LTD. 1200-308-4 AVE SW
		CALGARY
		ALBERTA T2POH7
		(DATA UPDATED BY: TRANSFER OF CAVEAT 142406429)
1173HN	17/02/1950	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		1200-308-4 AVE SW
		CALGARY
		ALBERTA T2POH7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		142407148)
2597HR	18/10/1950	CAVEAT
		CAVEATOR - IMPERIAL OIL LIMITED.
3484KF	17/01/1956	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		PO BOX 6776,STATION D
		CALGARY
		ALBERTA T2P2E7
		(DATA UPDATED BY: TRANSFER OF CAVEAT
		072517379)
		(DATA UPDATED BY: CHANGE OF ADDRESS 152105217)
2981TF	29/08/1972	CAVEAT
		CAVEATOR - IMPERIAL OIL LIMITED.
1126 VA	20/08/1974	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		PO BOX 6776,STATION D
		CALGARY
		ALBERTA T2P2E7
		(DATA UPDATED BY: TRANSFER OF CAVEAT 072516592)
		(DATA UPDATED BY: CHANGE OF ADDRESS 152149325)
802065866	25/03/1980	CAVEAT
		CAVEATOR - ARC RESOURCES LTD.
		(CONTINUED)

TOTAL INSTRUMENTS: 012

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 6 DAY OF MAY, 2019 AT 03:08 P.M.

ORDER NUMBER: 37176221
CUSTOMER FILE NUMBER:

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT (S).

Appendix G

HRA Clearance Letter

HRA Number: 4835-20-0014-001

Historical Resources Act Approval

Proponent:	TeckEra Civil Engineering Consultants 18130105 Ave NW \#100, Edmonton, AB T5S 2T4
Contact:	Mr. Glen Pitt
Agent:	Black Fly Environmental Ltd.
Contact:	Annissa Robertson
Project Name:	Redwater Industrial Subdivision
Project Components: \quad Industrial Subdivision	
Application Purpose:	Requesting HRA Approval / Requirements

Historical Resources Act approval is granted for the activities described in this application and its attached plan(s)/sketch(es) subject to Section 31, "a person who discovers an historic resource in the course of making an excavation for a purpose other than for the purpose of seeking historic resources shall forthwith notify the Minister of the discovery." The chance discovery of historical resources is to be reported to the contacts identified within Standard Requirements under the Historical Resources Act: Reporting the Discovery of Historic Resources.

Martina Purdon
Manager, Regulatory Approvals and Information Management Alberta Culture, Multiculturalism and Status of Women

Lands Affected: All New Lands

Proposed Development Area:

MER	RGE	TWP	SEC	LSD List
4	21	57	29	$3-6$

Documents Attached:

Document Name	Document Type
Illustration of phased construction	Review
Project footprint figure	Illustrative Material

Curent Wetland Extent

Field Work: October 10, 2018

Prear B

Project Name: Red Water Wetlands
Legal Land Description: $5 W-29-57-21$ W
Figure Number: 1.0

[^0]: Board. There may be a strict time limit for filing such an appeal, For further information, plats contact the Executive Directer of the Environmental

[^1]: The Responsible Energy Development Act (REDA) permits the filing of a request for a regulatory appeal by an eligible person in regards to an appealable decision as defined in section 36 of REDA.
 If you are eligible to file a request for a regulatory appeal and you wish to do so, you must submit your request in the form and manner and within the timeframe required by the AER. Filing requirements are set out in section 30 of the Alberta Energy Regulator Rules of Practice available on the AER website, www.aer.ca, under Rules \& Directives > Acts, Regulations and Rules. Regulatory appeal requests should be e-mailed to RegulatoryAppeal@aer.ca.

 Alberta Energy Regulator Suite 1000, 250 Street SW, Calgary, Alberta T2P 0R4

[^2]: (1) UN-SIGNALIZED INTERSECTION

 X(Y) TRAFFIC VOLUME AM PEAK (PM PEAK)

